Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Machine Learning and the Legal Framework for the Use of Passenger Name Record Data

  • Conference paper
  • First Online:
Intelligent Technologies and Applications (INTAP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1382))

Included in the following conference series:

  • 684 Accesses

Abstract

The processing of passenger name records (PNR) for security purposes on a European level was officially announced in 2016. Since then, ongoing legal discussions about PNR data focus mainly on its collection and the impact on data protection. The focus of this paper lies on a less-discussed aspect of the legal framework: the processing of PNR data and the different technological approaches it allows for. The following analysis of the German implementation of the European Directive on PNR data processing shows that it is open to the use of two different technological approaches: theory-based and machine learning methods. Taking this into account can provide a perspective that is mostly lacking in current legal debates about PNR data but can be an important addition since different technological approaches might shift the focus from data protection concerns to some aspects of technologies like machine learning. The paper also addresses a need for more technical research on the topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    107th Congress (2001-2002), p. 1447 – Aviation and Transportation Security Act.

  2. 2.

    BGBl. Part 1: Nr. 34 (2017), 1484.

  3. 3.

    See p. 28 of BT-Drs. 18/11501.

  4. 4.

    AG Mengozzi, in: ECJ, Opinion 1/15, EU:C:2016:656, point 252.

  5. 5.

    BT-Drs. 18/11501, p. 28.

  6. 6.

    In computer sciences, the terms “features” or “attributes” are often used to describe the properties of a model. In mathematics, the term “variable” can sometimes be used for this purpose. In the following, the term “criteria” is used since it is also used in Section 4 (3) second sentence FlugDaG: “The patterns shall contain […] criteria”.

  7. 7.

    BT-Drs. 19/12858, p. 4.

  8. 8.

    BT-Drs. 18/11501, p. 23.

  9. 9.

    BT-Drs. 19/12975, p. 7.

  10. 10.

    Causality in this context is not understood as a definite causal link between cause and event, such as the term may be known in the natural sciences. Instead, a limited concept of causality is applied, which stands for an observed regularity between certain characteristics and certain offenses in the sense of plausible cause-and-effect relationships. Such a concept of causality stands for the assumption that certain causes make the occurrence of an event more probable and is understood, therefore, as probabilistic causality, such as described by [19], p. 87-97. When analyzing behavioral causes, it can be difficult to work with stricter concepts of causality, see [20] p. 1098, with further evidence.

  11. 11.

    BT-Drs. 18/11501, p. 29.

  12. 12.

    For a similar description of patterns in a different context of police work, see [17] p. 250.

  13. 13.

    https://tinyurl.com/yyd27n2x, last accessed on 30.1.2021.

  14. 14.

    EU Council 6300/19, 15.2.2019, p. 8 ff., see also [5], p. 12.

  15. 15.

    UN Homepage, https://www.un.org/cttravel/goTravel, last accessed on 30.1.2021.

  16. 16.

    EU Council 10139/18, 21.6.2018, p. 3.

References

  1. Directive (EU) 2016/681 of the European Parliament and of the Council of 27 April 2016 on the use of passenger name record (PNR) data for the prevention, detection, investigation and prosecution of terrorist offenses and serious crime

    Google Scholar 

  2. Fiedler, T.N.: Die Einführung eines europäischen Fluggastdatensystems. Konflikt zwischen Datenschutz und Innerer Sicherheit. Baden-Baden, Nomos (2016)

    Google Scholar 

  3. Argomaniz, J.: When the EU is the ‘Norm-taker’: the passenger name records agreement and the EU’s Internalization of US border security norms. J. Eur. Integr. 31(1), 119–136 (2009). https://doi.org/10.1080/07036330802503981

    Article  Google Scholar 

  4. Proposal for a Directive of the European Parliament and of the Council on the use of Passenger Name Record data for the prevention, detection, investigation and prosecution of terrorist offenses and serious crime, COM(2011) 32 final

    Google Scholar 

  5. Commission Staff Working Document SWD: 128 final, Accompanying the document Report from the Commission to the European Parliament and the Council On the review of Directive 2016/681 on the use of passenger name record (PNR) data for the prevention, detection, investigation and prosecution of terrorist offences and serious crime {COM(2020) 305 final} (2020)

    Google Scholar 

  6. Stellungahme des Nationalen Normenkontrollrates gemäß § 6 Absatz 1 NKRG zum Entwurf eines Gesetzes über die Verarbeitung von Fluggastdaten zur Umsetzung der Richtlinie (EU) 2016/681 (NKR-Nummer 3976, BMI)

    Google Scholar 

  7. Rademacher, T.: Predictive Policing im deutschen Polizeirecht. AöR 142(3), 366–416 (2016). https://doi.org/10.1628/000389117X15054009148798

  8. Ulbricht, L.: When big data meet securitization. Algorithmic regulation with passenger name records. Eur. J. Secur. Res. 3(2), 139–161 (2018). https://doi.org/10.1007/s41125-018-0030-3

    Article  Google Scholar 

  9. Koc-Menard, S.: Trends in Terrorist Detection Systems. JHSEM 6(1) Article 4, 1–13 (2009). https://doi.org/10.2202/1547-7355.1474

  10. Deutscher Bundestag 18. Wahlperiode, Innenausschluss, Wortprotokoll der 114. Sitzung, 24 April 2017

    Google Scholar 

  11. NZK: Information on Predictive Policing. https://www.nzkrim.de/synthese/zeige/approach-predictive-policing. Accessed 30 Jan 2021

  12. Knobloch, T.: Vor die Lage kommen: Predictive Policing in Deutschland. Chancen und Gefahren datenanalytischer Prognosetechnik und Empfehlungen für den Einsatz in der Polizeiarbeit. Bertelsmann-Stiftung (2018)

    Google Scholar 

  13. Wischmeyer, T.: Predictive Policing. Nebenfolgen der Automatisierung von Prognosen. In: Kulick, A., Goldhammer, M. (eds.) Der Terrorist als Feind?, pp. 194–213. Tübingen, Mohr Siebeck, Personalisierung im Polizei- und Völkerrecht (2020)

    Google Scholar 

  14. Hildebrandt, M.: Smart Technologies and the End(s) of Law. Novel Entanglements of Law and Technology. Edward Elgar, Cheltenham (2016)

    Google Scholar 

  15. LaFree, G., Freilich, J.D. (eds.): The Handbook of the Criminology of Terrorism. Wiley-Blackwell, Chichester (2017)

    Google Scholar 

  16. LaFree, G., Freilich, J.D.: Bringing criminology into the study of terrorism. In: LaFree, G., Freilich, J.D. (eds.) The Handbook of the Criminology of Terrorism, pp. 1–14. Wiley-Blackwell, Chichester (2017)

    Google Scholar 

  17. Rusteberg, B.: Wissensgenerierung in der personenbezogenen Prävention. Zwischen kriminalistischer Erfahrung und erkenntnistheoretischer Rationalität. In: Münkler, L. (ed.) Dimensionen des Wissens im Recht, Tübingen, Mohr Siebeck, pp. 233–264 (2019)

    Google Scholar 

  18. Filstad, C., Gottschalk, P.: Knowledge management in the police force. In: Örtenblad, A. (ed.) Handbook of Research on Knowledge Management. Adaption and Context, pp. 69–86. Edward Elgar, Cheltenham (2015)

    Google Scholar 

  19. Hüttemann, A.: Ursachen, 2nd revised edition. De Gruyter, Berlin (2018)

    Google Scholar 

  20. Selbst, A.D., Barocas, S.: The intuitive appeal of explainable machines. Fordham L. Rev. 87(3), 1085–1139 (2018)

    Google Scholar 

  21. Romero Morales, D., Wang, J.: Forecasting cancellation rates for services booking revenue management using data mining. Eur. J. Oper. Res. 202(2), 554–562 (2010). https://doi.org/10.1016/j.ejor.2009.06.006

    Article  MATH  Google Scholar 

  22. Sales, N.A.: Big Data at the border. Balancing visa-free travel and security in a digital age. Syracuse University College of Law (2015). https://perma.cc/WK8G-C95V

  23. Ariyawansa, C.M., Aponso, A.C.: Review on state of art data mining and machine learning techniques for intelligent Airport systems. In: ICIM, Proceedings of the International Conference on Information Management, pp. 134–138. IEEE, Piscataway (2016)

    Google Scholar 

  24. Domingues, R., Buonora, F., Senesi, R., Thonnard, O.: An application of unsupervised fraud detection to passenger name records. In: 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop, pp. 54–59. IEEE (2016)

    Google Scholar 

  25. Zheng, Y.-J., Sheng, W.-G., Sun, X.-M., Chen, S.-Y.: Airline passenger profiling based on fuzzy deep machine learning. IEEE Trans. Neural Netw. Learn. Syst. 28(12), 2911–2923 (2017). https://doi.org/10.1109/TNNLS.2016.2609437

    Article  MathSciNet  Google Scholar 

  26. Mottini, A., Lheritier, A., Acuna-Agost, R.: Airline passenger name record generation using generative adversarial networks. In: ICLM workshop on Theoretical Foundations and Applications of Deep Generative Models (2018)

    Google Scholar 

  27. Korff, D., Georges, M.: Passenger name records, data mining & data protection: the need for strong safeguards, Council of Europe T-PD 11 (2015)

    Google Scholar 

  28. Adensamer, A., Klausner, L. D.: Ich weiß, was du nächsten Sommer getan haben wirst, juridikum 31(3), 419–431 (2019). https://arxiv.org/ftp/arxiv/papers/1907/1907.00934.pdf. Accessed 30 Jan 2021

  29. Arzt, C.: Das neue Gesetz zur Fluggastdatenspeicherung. Einladung zur anlasslosen Rasterfahndung durch das BKA. DÖV 24, 1023–1030 (2017)

    Google Scholar 

  30. Broemel, R., Trute, H.-H.: Alles nur Datenschutz? Zur rechtlichen Regulierung algorithmenbasierter Wissensgenerierung. BDI 27(4), 50–65 (2016)

    Google Scholar 

  31. Hoffmann-Riem, W.: Artificial intelligence as a challenge for law and regulation. In: Wischmeyer, T., Rademacher, T. (eds.) Regulating Artificial Intelligence, pp. 1–29. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32361-5_1

    Chapter  Google Scholar 

  32. Djeffal, C.: Normative Leitlinien für Künstliche Intelligenz in Regierung und öffentlicher Verwaltung. In: Mohabbat-Kar, R., Thapa, B.E.P., Parycek, P. (eds.) (Un)berechenbar?, pp. 493–515. Kompetenzzentrum Öffentliche IT, Algorithmen und Automatisierung in Staat und Gesellschaft, Berlin (2018)

    Google Scholar 

  33. Price, W.N., II., Rai, A.K.: Clearing opacity through machine learning. SSRN J. (2020). https://doi.org/10.2139/ssrn.3536983

    Article  Google Scholar 

  34. Martini, M.: Blackbox Algorithmus – Grundfragen einer Regulierung Künstlicher Intelligenz, Springer, Heidelberg (2019).https://doi.org/10.1007/978-3-662-59010-2

  35. Meyer, S.: Künstliche Intelligenz und die Rolle des Rechts für Innovation. Rechtliche Rationalitätsanforderungen an zukünftige Regulierung. ZRP 8, 221–252 (2018)

    Google Scholar 

  36. Hermstrüwer, Y.: Die Regulierung der prädiktiven Analytik: eine juristisch-verhaltenswissenschaftliche Skizze. In: Hoffmann-Riem, W. (ed.) Big Data - Regulative Herausforderungen, pp. 99–116. Baden-Baden, Nomos (2018)

    Google Scholar 

  37. Dreyer, S.: Predictive Analytics aus der Perspektive von Menschenwürde und Autonomie. In: Hoffmann-Riem, W. (ed.) Big Data - Regulative Herausforderungen, pp. 135–143. Baden-Baden, Nomos (2018)

    Google Scholar 

  38. Wischmeyer, T.: Regulierung intelligenter Systeme. AöR 143(1), 1–66 (2018)

    Article  Google Scholar 

  39. Coglianese, C., Lehr, D.: Regulating by robot: administrative decision making in the machine-learning era. Penn Law Legal Scholar. Rep. 15(6), 1147–1223 (2017)

    Google Scholar 

  40. Gless, S.: Predictive policing und operative Verbrechensbekämpfung. In: Wolter, J., Herzog, F., Schlothauer, R., Wohlers, W. (eds.) Rechtsstaatlicher Strafprozess und Bürgerrechte. GS für Edda Weßlau, pp. 165–180. Duncker & Humblot, Berlin (2016)

    Google Scholar 

  41. Singelnstein, T.: Predictive Policing: Algorithmenbasierte Straftaprognosen zur vorausschauenden Kriminalintervention. NStZ 2, 1–9 (2018)

    Google Scholar 

  42. Baur, A.: Maschinen führen die Aufsicht. Offene Fragen der Kriminalprävention durch digitale Überwachungsagenten. ZIS 15(6), 275–284 (2020)

    Google Scholar 

  43. Pravica, S.: Variablen des Unberechenbaren. Eine Epistemologie der Unwägbarkeiten quantitativer Voraussageverfahren in Sicherheit und Militär. In: Friedrich, A., Gehring, P., Hubig, C., Kaminski, A., Nordmann, A. (eds.) Technisches Nichtwissen, pp. 123–146. Nomos, Baden-Baden (2017)

    Chapter  Google Scholar 

  44. Monroy, M., Busch, H.: Umfangreiche Wunschzettel - EU-Datenbanken und Terrorismusbekämpfung. CILIP 112 (2017). https://www.cilip.de/

  45. Sherer, J.A., Sterling, N.L., Burger, L., Banaschik, M., Taal, A.: An investigator’s christmas carol: past, present, and future law enforcement agency data mining practices. In: Jahankhani, H. (ed.) Cyber Criminology. ASTSA, pp. 251–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97181-0_12

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iva Kostov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kostov, I. (2021). Machine Learning and the Legal Framework for the Use of Passenger Name Record Data. In: Yildirim Yayilgan, S., Bajwa, I.S., Sanfilippo, F. (eds) Intelligent Technologies and Applications. INTAP 2020. Communications in Computer and Information Science, vol 1382. Springer, Cham. https://doi.org/10.1007/978-3-030-71711-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71711-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71710-0

  • Online ISBN: 978-3-030-71711-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics