Abstract
The processing of passenger name records (PNR) for security purposes on a European level was officially announced in 2016. Since then, ongoing legal discussions about PNR data focus mainly on its collection and the impact on data protection. The focus of this paper lies on a less-discussed aspect of the legal framework: the processing of PNR data and the different technological approaches it allows for. The following analysis of the German implementation of the European Directive on PNR data processing shows that it is open to the use of two different technological approaches: theory-based and machine learning methods. Taking this into account can provide a perspective that is mostly lacking in current legal debates about PNR data but can be an important addition since different technological approaches might shift the focus from data protection concerns to some aspects of technologies like machine learning. The paper also addresses a need for more technical research on the topic.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
107th Congress (2001-2002), p. 1447 – Aviation and Transportation Security Act.
- 2.
BGBl. Part 1: Nr. 34 (2017), 1484.
- 3.
See p. 28 of BT-Drs. 18/11501.
- 4.
AG Mengozzi, in: ECJ, Opinion 1/15, EU:C:2016:656, point 252.
- 5.
BT-Drs. 18/11501, p. 28.
- 6.
In computer sciences, the terms “features” or “attributes” are often used to describe the properties of a model. In mathematics, the term “variable” can sometimes be used for this purpose. In the following, the term “criteria” is used since it is also used in Section 4 (3) second sentence FlugDaG: “The patterns shall contain […] criteria”.
- 7.
BT-Drs. 19/12858, p. 4.
- 8.
BT-Drs. 18/11501, p. 23.
- 9.
BT-Drs. 19/12975, p. 7.
- 10.
Causality in this context is not understood as a definite causal link between cause and event, such as the term may be known in the natural sciences. Instead, a limited concept of causality is applied, which stands for an observed regularity between certain characteristics and certain offenses in the sense of plausible cause-and-effect relationships. Such a concept of causality stands for the assumption that certain causes make the occurrence of an event more probable and is understood, therefore, as probabilistic causality, such as described by [19], p. 87-97. When analyzing behavioral causes, it can be difficult to work with stricter concepts of causality, see [20] p. 1098, with further evidence.
- 11.
BT-Drs. 18/11501, p. 29.
- 12.
For a similar description of patterns in a different context of police work, see [17] p. 250.
- 13.
https://tinyurl.com/yyd27n2x, last accessed on 30.1.2021.
- 14.
EU Council 6300/19, 15.2.2019, p. 8 ff., see also [5], p. 12.
- 15.
UN Homepage, https://www.un.org/cttravel/goTravel, last accessed on 30.1.2021.
- 16.
EU Council 10139/18, 21.6.2018, p. 3.
References
Directive (EU) 2016/681 of the European Parliament and of the Council of 27 April 2016 on the use of passenger name record (PNR) data for the prevention, detection, investigation and prosecution of terrorist offenses and serious crime
Fiedler, T.N.: Die Einführung eines europäischen Fluggastdatensystems. Konflikt zwischen Datenschutz und Innerer Sicherheit. Baden-Baden, Nomos (2016)
Argomaniz, J.: When the EU is the ‘Norm-taker’: the passenger name records agreement and the EU’s Internalization of US border security norms. J. Eur. Integr. 31(1), 119–136 (2009). https://doi.org/10.1080/07036330802503981
Proposal for a Directive of the European Parliament and of the Council on the use of Passenger Name Record data for the prevention, detection, investigation and prosecution of terrorist offenses and serious crime, COM(2011) 32 final
Commission Staff Working Document SWD: 128 final, Accompanying the document Report from the Commission to the European Parliament and the Council On the review of Directive 2016/681 on the use of passenger name record (PNR) data for the prevention, detection, investigation and prosecution of terrorist offences and serious crime {COM(2020) 305 final} (2020)
Stellungahme des Nationalen Normenkontrollrates gemäß § 6 Absatz 1 NKRG zum Entwurf eines Gesetzes über die Verarbeitung von Fluggastdaten zur Umsetzung der Richtlinie (EU) 2016/681 (NKR-Nummer 3976, BMI)
Rademacher, T.: Predictive Policing im deutschen Polizeirecht. AöR 142(3), 366–416 (2016). https://doi.org/10.1628/000389117X15054009148798
Ulbricht, L.: When big data meet securitization. Algorithmic regulation with passenger name records. Eur. J. Secur. Res. 3(2), 139–161 (2018). https://doi.org/10.1007/s41125-018-0030-3
Koc-Menard, S.: Trends in Terrorist Detection Systems. JHSEM 6(1) Article 4, 1–13 (2009). https://doi.org/10.2202/1547-7355.1474
Deutscher Bundestag 18. Wahlperiode, Innenausschluss, Wortprotokoll der 114. Sitzung, 24 April 2017
NZK: Information on Predictive Policing. https://www.nzkrim.de/synthese/zeige/approach-predictive-policing. Accessed 30 Jan 2021
Knobloch, T.: Vor die Lage kommen: Predictive Policing in Deutschland. Chancen und Gefahren datenanalytischer Prognosetechnik und Empfehlungen für den Einsatz in der Polizeiarbeit. Bertelsmann-Stiftung (2018)
Wischmeyer, T.: Predictive Policing. Nebenfolgen der Automatisierung von Prognosen. In: Kulick, A., Goldhammer, M. (eds.) Der Terrorist als Feind?, pp. 194–213. Tübingen, Mohr Siebeck, Personalisierung im Polizei- und Völkerrecht (2020)
Hildebrandt, M.: Smart Technologies and the End(s) of Law. Novel Entanglements of Law and Technology. Edward Elgar, Cheltenham (2016)
LaFree, G., Freilich, J.D. (eds.): The Handbook of the Criminology of Terrorism. Wiley-Blackwell, Chichester (2017)
LaFree, G., Freilich, J.D.: Bringing criminology into the study of terrorism. In: LaFree, G., Freilich, J.D. (eds.) The Handbook of the Criminology of Terrorism, pp. 1–14. Wiley-Blackwell, Chichester (2017)
Rusteberg, B.: Wissensgenerierung in der personenbezogenen Prävention. Zwischen kriminalistischer Erfahrung und erkenntnistheoretischer Rationalität. In: Münkler, L. (ed.) Dimensionen des Wissens im Recht, Tübingen, Mohr Siebeck, pp. 233–264 (2019)
Filstad, C., Gottschalk, P.: Knowledge management in the police force. In: Örtenblad, A. (ed.) Handbook of Research on Knowledge Management. Adaption and Context, pp. 69–86. Edward Elgar, Cheltenham (2015)
Hüttemann, A.: Ursachen, 2nd revised edition. De Gruyter, Berlin (2018)
Selbst, A.D., Barocas, S.: The intuitive appeal of explainable machines. Fordham L. Rev. 87(3), 1085–1139 (2018)
Romero Morales, D., Wang, J.: Forecasting cancellation rates for services booking revenue management using data mining. Eur. J. Oper. Res. 202(2), 554–562 (2010). https://doi.org/10.1016/j.ejor.2009.06.006
Sales, N.A.: Big Data at the border. Balancing visa-free travel and security in a digital age. Syracuse University College of Law (2015). https://perma.cc/WK8G-C95V
Ariyawansa, C.M., Aponso, A.C.: Review on state of art data mining and machine learning techniques for intelligent Airport systems. In: ICIM, Proceedings of the International Conference on Information Management, pp. 134–138. IEEE, Piscataway (2016)
Domingues, R., Buonora, F., Senesi, R., Thonnard, O.: An application of unsupervised fraud detection to passenger name records. In: 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop, pp. 54–59. IEEE (2016)
Zheng, Y.-J., Sheng, W.-G., Sun, X.-M., Chen, S.-Y.: Airline passenger profiling based on fuzzy deep machine learning. IEEE Trans. Neural Netw. Learn. Syst. 28(12), 2911–2923 (2017). https://doi.org/10.1109/TNNLS.2016.2609437
Mottini, A., Lheritier, A., Acuna-Agost, R.: Airline passenger name record generation using generative adversarial networks. In: ICLM workshop on Theoretical Foundations and Applications of Deep Generative Models (2018)
Korff, D., Georges, M.: Passenger name records, data mining & data protection: the need for strong safeguards, Council of Europe T-PD 11 (2015)
Adensamer, A., Klausner, L. D.: Ich weiß, was du nächsten Sommer getan haben wirst, juridikum 31(3), 419–431 (2019). https://arxiv.org/ftp/arxiv/papers/1907/1907.00934.pdf. Accessed 30 Jan 2021
Arzt, C.: Das neue Gesetz zur Fluggastdatenspeicherung. Einladung zur anlasslosen Rasterfahndung durch das BKA. DÖV 24, 1023–1030 (2017)
Broemel, R., Trute, H.-H.: Alles nur Datenschutz? Zur rechtlichen Regulierung algorithmenbasierter Wissensgenerierung. BDI 27(4), 50–65 (2016)
Hoffmann-Riem, W.: Artificial intelligence as a challenge for law and regulation. In: Wischmeyer, T., Rademacher, T. (eds.) Regulating Artificial Intelligence, pp. 1–29. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32361-5_1
Djeffal, C.: Normative Leitlinien für Künstliche Intelligenz in Regierung und öffentlicher Verwaltung. In: Mohabbat-Kar, R., Thapa, B.E.P., Parycek, P. (eds.) (Un)berechenbar?, pp. 493–515. Kompetenzzentrum Öffentliche IT, Algorithmen und Automatisierung in Staat und Gesellschaft, Berlin (2018)
Price, W.N., II., Rai, A.K.: Clearing opacity through machine learning. SSRN J. (2020). https://doi.org/10.2139/ssrn.3536983
Martini, M.: Blackbox Algorithmus – Grundfragen einer Regulierung Künstlicher Intelligenz, Springer, Heidelberg (2019).https://doi.org/10.1007/978-3-662-59010-2
Meyer, S.: Künstliche Intelligenz und die Rolle des Rechts für Innovation. Rechtliche Rationalitätsanforderungen an zukünftige Regulierung. ZRP 8, 221–252 (2018)
Hermstrüwer, Y.: Die Regulierung der prädiktiven Analytik: eine juristisch-verhaltenswissenschaftliche Skizze. In: Hoffmann-Riem, W. (ed.) Big Data - Regulative Herausforderungen, pp. 99–116. Baden-Baden, Nomos (2018)
Dreyer, S.: Predictive Analytics aus der Perspektive von Menschenwürde und Autonomie. In: Hoffmann-Riem, W. (ed.) Big Data - Regulative Herausforderungen, pp. 135–143. Baden-Baden, Nomos (2018)
Wischmeyer, T.: Regulierung intelligenter Systeme. AöR 143(1), 1–66 (2018)
Coglianese, C., Lehr, D.: Regulating by robot: administrative decision making in the machine-learning era. Penn Law Legal Scholar. Rep. 15(6), 1147–1223 (2017)
Gless, S.: Predictive policing und operative Verbrechensbekämpfung. In: Wolter, J., Herzog, F., Schlothauer, R., Wohlers, W. (eds.) Rechtsstaatlicher Strafprozess und Bürgerrechte. GS für Edda Weßlau, pp. 165–180. Duncker & Humblot, Berlin (2016)
Singelnstein, T.: Predictive Policing: Algorithmenbasierte Straftaprognosen zur vorausschauenden Kriminalintervention. NStZ 2, 1–9 (2018)
Baur, A.: Maschinen führen die Aufsicht. Offene Fragen der Kriminalprävention durch digitale Überwachungsagenten. ZIS 15(6), 275–284 (2020)
Pravica, S.: Variablen des Unberechenbaren. Eine Epistemologie der Unwägbarkeiten quantitativer Voraussageverfahren in Sicherheit und Militär. In: Friedrich, A., Gehring, P., Hubig, C., Kaminski, A., Nordmann, A. (eds.) Technisches Nichtwissen, pp. 123–146. Nomos, Baden-Baden (2017)
Monroy, M., Busch, H.: Umfangreiche Wunschzettel - EU-Datenbanken und Terrorismusbekämpfung. CILIP 112 (2017). https://www.cilip.de/
Sherer, J.A., Sterling, N.L., Burger, L., Banaschik, M., Taal, A.: An investigator’s christmas carol: past, present, and future law enforcement agency data mining practices. In: Jahankhani, H. (ed.) Cyber Criminology. ASTSA, pp. 251–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97181-0_12
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Kostov, I. (2021). Machine Learning and the Legal Framework for the Use of Passenger Name Record Data. In: Yildirim Yayilgan, S., Bajwa, I.S., Sanfilippo, F. (eds) Intelligent Technologies and Applications. INTAP 2020. Communications in Computer and Information Science, vol 1382. Springer, Cham. https://doi.org/10.1007/978-3-030-71711-7_33
Download citation
DOI: https://doi.org/10.1007/978-3-030-71711-7_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-71710-0
Online ISBN: 978-3-030-71711-7
eBook Packages: Computer ScienceComputer Science (R0)