Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Overlapping Oral Epithelial Cells Segmentation: Voronoi-Based Hybrid Active Contour Model

  • Chapter
  • First Online:
Advanced Machine Learning Approaches in Cancer Prognosis

Abstract

Oral cancer is a major healthcare problem and accounts for approximately 40% of cancer risk. It is evident that the detection of oral cancer at an early stage can markedly improve the survival rate. Though several invasive ‘gold standard’ methods continue to be practiced clinically, non-invasive detection modalities look promising for early oral cancer risk assessment. Exfoliative cytology is one such method in which the desquamated cells are collected from the oral epithelium and examined under microscope. However, the main challenge in automated quantification arises here on the formation of cellular clump during the smear preparation. In this chapter, the role of computational advances in segmentation of overlapping cells is illustrated. A computational model, based on Voronoi-based hybrid active contour method, is proposed for segmenting the overlapping oral epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boone, J.D., Erickson, B.K., Huh, W.K.: New insights into cervical cancer screening. J. Gynecol. Oncol. 23, 282–287 (2012)

    Article  Google Scholar 

  2. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018)

    Article  Google Scholar 

  3. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)

    Article  Google Scholar 

  4. Chen, T., Zhang, Y., Wang, C., Qu, Z., Wang, F., Syeda-Mahmood, T.: Complex local phase based subjective surfaces (CLAPSS) and its application to DIC red blood cell image segmentation. Neurocomputing 99, 98–110 (2013)

    Article  Google Scholar 

  5. Dey, S., Sarkar, R., Chatterjee, K., Datta, P., Barui, A., Maity, S.P.: Pre-cancer risk assessment in habitual smokers from DIC images of oral exfoliative cells using active contour and SVM analysis. Tissue Cell 49, 296–306 (2017)

    Article  Google Scholar 

  6. Flight, R., Landini, G., Styles, I., Shelton, R., Milward, M., Cooper, P.: Automated optimisation of cell segmentation parameters in phase contrast using discrete mereotopology. Proceedings 19th Conference Medicine Image Understanding Analysis, pp. 126–131 (2015)

    Google Scholar 

  7. Flight, R., Landini, G., Styles, I.B., Shelton, R., Milward, M., Cooper, P.: Semi-automated cell counting in phase contrast images of epithelial monolayers. Proceedings 18th Annual Conference Medicine Image Understanding Analysis Egham, UK, pp. 241–246 (2014)

    Google Scholar 

  8. Galeana, A., Porras-Aguilar, R.: Real-time label-free microscopy with adjustable phase-contrast. Opt. Express 28, 27524 (2020)

    Article  Google Scholar 

  9. Gamarra, M., Zurek, E., Jair, H., Hurtado, L.: Split and merge watershed: a two-step method for cell segmentation in fluorescence microscopy images. Biomed. Signal Process. Control 53, (2019)

    Article  Google Scholar 

  10. Gloger, O., Tönnies, K., Bülow, R., Völzke, H.: Automatized spleen segmentation in non-contrast-enhanced MR volume data using subject-specific shape priors. Phys. Med. Biol. 62, 5861–5883 (2017)

    Article  Google Scholar 

  11. Horé, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. Proceedings International Conference Pattern Recognit, pp. 2366–2369 (2010)

    Google Scholar 

  12. Kim, M., Choi, Y., Fang-Yen, C., Sung, Y., Kim, K., Dasari, R.R., Feld, M.S., Choi, W.: Three-dimensional differential interference contrast microscopy using synthetic aperture imaging. J. Biomed. Opt. 17, (2012)

    Article  Google Scholar 

  13. Kuijper, A., Heise, B.: An automatic cell segmentation method for differential interference contrast microscopy. Proceedings International Conference Pattern Recognition (2008)

    Google Scholar 

  14. Lankton, S., Tannenbaum, A.: Localizing region-based active contours. IEEE Trans. Image Process. 17, 2029–2039 (2008)

    Article  MathSciNet  Google Scholar 

  15. Ljosa, V., Carpenter, A.E.: Introduction to the quantitative analysis of two-dimensional fluorescence microscopy images for cell-based screening. PLoS Comput. Biol. 5, 1–19 (2009)

    Article  Google Scholar 

  16. Mihailova, A., Georgieva, V.: Comparative analysis of various filters for noise reduction in MRI abdominal images. Int. J. Inf. Technol. Knowl. 10 (2016)

    Google Scholar 

  17. Nosrati, M.S., Hamarneh, G.: Segmentation of overlapping cervical cells: A variational method with star-shape prior. In: Proccedings on IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 186–189. IEEE (2015)

    Google Scholar 

  18. Obara, B., Roberts, M.A.J., Armitage, J.P., Grau, V.: Bacterial cell identification in differential interference contrast microscopy images. BMC Bioinformatics 14, 134 (2013)

    Article  Google Scholar 

  19. Oszutowska-Mazurek, D., Mazurek, P., Sycz, K., Waker-Wójciuk, G.: Estimation of fractal dimension according to optical density of cell nuclei in Papanicolaou smears. In: Information Technologies in Biomedicine, pp. 456–463 (2012)

    Google Scholar 

  20. Plissiti, M.E., Nikou, C., Charchanti, A.: Accurate localization of cell nuclei in PAP smear images using gradient vector flow deformable models. In: Proceedings on Third International Conference on Bio-inspired Systems and Signal Processing, pp. 284–289 (2010)

    Google Scholar 

  21. Rath, G., Gandhi, A.: National cancer control and registration program in India. Indian J. Med. Paediatr. Oncol. 35, 288 (2014)

    Article  Google Scholar 

  22. Roblyer, D., Kurachi, C., Stepanek, V., Williams, M.D., El-Naggar, A.K., Lee, J.J., Gillenwater, A.M., Richards-Kortum, R.: Objective detection and delineation of oral neoplasia using autofluorescence imaging. Cancer Prev. Res. 2, 423–431 (2009)

    Article  Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). vol. 9351, pp. 234–241 (2015)

    Google Scholar 

  24. Sarkar, R., Dey, S., Pal, M., Paul, R.R., Chatterjee, J., RoyChaudhuri, C., Barui, A.: Risk prediction for oral potentially malignant disorders using fuzzy analysis of cytomorphological and autofluorescence alterations in habitual smokers. Futur. Oncol. 13, 499–511 (2017)

    Article  Google Scholar 

  25. Shade-Off and Halo Phase Contrast Artifacts Shade—Off and Halo Phase Contrast Artifacts, 1–4 (2017)

    Google Scholar 

  26. Song, Y., Tan, E.-L., Jiang, X., Cheng, J.-Z., Ni, D., Chen, S., Lei, B., Wang, T.: Accurate cervical cell segmentation from overlapping clumps in pap smear images. IEEE Trans. Med. Imaging 36, 288–300 (2017)

    Article  Google Scholar 

  27. Suberi, A.A.M., Zakaria, W.N.W., Tomari, R., Lim, K.P.: Optimization of overlapping dendritic cell segmentation in phase contrast microscopy images. In: Proccedings on IEEE-EMBS Conference on Biomedical Engineering and Sciences, pp. 246–250 (2016)

    Google Scholar 

  28. Tareef, A., Song, Y., Huang, H., Feng, D., Chen, M., Wang, Y., Cai, W.: Multi-pass fast Watershed for accurate segmentation of overlapping cervical cells. IEEE Trans. Med. Imaging 37, 2044–2059 (2018)

    Article  Google Scholar 

  29. Ulaganathan, G., Niazi, K.T.M., Srinivasan, S., Balaji, V.R., Manikandan, D., Hameed, K.A.S., B.A.: A clinicopathological study of various oral cancer diagnostic techniques. Asian J. Pharm. Clin. Res. 7, 1–5 (2017)

    Google Scholar 

  30. Van der Waal, I.: Are we able to reduce the mortality and morbidity of oral cancer; some considerations. Med. Oral Patol. Oral y Cir. Bucal. 18, e33–e37 (2013)

    Google Scholar 

  31. Victoria Matias, A., Cerentini, A., Buschetto Macarini, L.A., Atkinson Amorim, J.G., Perozzo Daltoe, F., Von Wangenheim, A.: Segmentation, detection and classification of cell nuclei on oral cytology samples stained with papanicolaou. Proc. IEEE Symp. Comput. Med. Syst. 7, 53–58 (2020)

    Google Scholar 

  32. Wang, L., Chang, Y., Wang, H., Wu, Z., Pu, J., Yang, X.: An active contour model based on local fitted images for image segmentation. Inf. Sci. (Ny) 418–419, 61–73 (2017)

    Article  Google Scholar 

  33. Wang, P., Wang, J., Li, Y., Li, L., Zhang, H.: Adaptive pruning of transfer learned deep convolutional neural network for classification of cervical Pap smear images. IEEE Access. 8, 50674–50683 (2020)

    Article  Google Scholar 

  34. Wang, P., Wang, L., Li, Y., Song, Q., Lv, S., Hu, X.: Automatic cell nuclei segmentation and classification of cervical Pap smear images. Biomed. Signal Process. Control 48, 93–103 (2019)

    Article  Google Scholar 

  35. Wang, X., Yang, J., Wei, C., Zhou, G., Wu, L., Gao, Q., He, X., Shi, J., Mei, Y., Liu, Y., Shi, X., Wu, F., Luo, J., Guo, Y., Zhou, Q., Yin, J., Hu, T., Lin, M., Liang, Z., Zhou, H.: A personalized computational model predicts cancer risk level of oral potentially malignant disorders and its web application for promotion of non-invasive screening. J. Oral Pathol. Med. 49, 417–426 (2020)

    Article  Google Scholar 

  36. Win, K.P., Kitjaidure, Y., Hamamoto, K., Aung, T.M.: Computer-assisted screening for cervical cancer using digital image processing of pap smear images. Appl. Sci. 10 (2020)

    Google Scholar 

  37. Wojtas, D.H., Wu, B., Ahnelt, P.K., Bones, P.J., Millane, R.P.: Automated analysis of differential interference contrast microscopy images of the foveal cone mosaic. J. Opt. Soc. Am. A 25, 1181 (2008)

    Article  Google Scholar 

  38. Wu, Y., Peng, X., Ruan, K., Hu, Z.: Improved image segmentation method based on morphological reconstruction. Multimed. Tools Appl. 76, 19781–19793 (2017)

    Article  Google Scholar 

  39. Young, D., Gray, A.J.: Template construction and matching for identification of cells in differential interference contrast microscope images. Proceedings IEEE Southwest Symposium Image Anal. Interpret, pp. 238–243 (1998)

    Google Scholar 

  40. Zhang, J., Hu, Z., Han, G., He, X.: Segmentation of overlapping cells in cervical smears based on spatial relationship and overlapping translucency light transmission model. Pattern Recognit. 60, 286–295 (2016)

    Article  Google Scholar 

  41. Zhang, N., Zhang, J., Shi, R.: An improved chan-vese model for medical image segmentation. proc. int. conf. comput. Sci. Softw. Eng. CSSE 2008. 1, 864–867 (2008)

    Google Scholar 

  42. Zhou, Y., Chen, H., Xu, J., Dou, Q., Heng, P.A.: IRNet: Instance relation network for overlapping cervical cell segmentation. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). vol. 11764 LNCS, 640–648 (2019)

    Google Scholar 

  43. Zou, K.H., Warfield, S.K., Bharatha, A., Tempany, C.M.C., Kaus, M.R., Haker, S.J., Wells, W.M., Jolesz, F.A., Kikinis, R.: Statistical validation of image segmentation quality based on a spatial overlap index1. Acad. Radiol. 11, 178–189 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adhikary, S., Paul, R.R., Mandal, M., Maity, S.P., Barui, A. (2021). Overlapping Oral Epithelial Cells Segmentation: Voronoi-Based Hybrid Active Contour Model. In: Nayak, J., Favorskaya, M.N., Jain, S., Naik, B., Mishra, M. (eds) Advanced Machine Learning Approaches in Cancer Prognosis. Intelligent Systems Reference Library, vol 204. Springer, Cham. https://doi.org/10.1007/978-3-030-71975-3_9

Download citation

Publish with us

Policies and ethics