Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Handling Priority Levels in Mixed Pareto-Lexicographic Many-Objective Optimization Problems

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2021)

Abstract

This paper studies a class of mixed Pareto-Lexicographic multi-objective optimization problems where the preference among the objectives is available in different priority levels (PLs) before the start of the optimization process – akin to many practical problems involving domain experts. Each priority level (PL) is a group of objectives having an identical importance in terms of optimization, so that they must be optimized in the standard Pareto sense. However, between two PLs, a lexicographic preference structure exists. Clearly, finding the entire set of Pareto optimal solutions first and then choosing the lexicographic solutions using the given PL structure is not computationally efficient. A new efficient algorithm is presented here using a recent mathematical breakthrough in handling infinite and infinitesimal quantities: the Grossone methodology. The proposal has been implemented within a popular multi-objective optimization algorithm (NSGA-II), thereby obtaining its generalized version named PL-NSGA-II, although other EMO or EMaO algorithms could have also been used instead. A quantitative comparison of PL-NSGA-II performance against existing algorithms is made. Results clearly show the advantage of the proposed Grossone-based methodology in solving such priority-level many-objective problems.

Work partially supported by the Italian MIUR – CrossLab project (Departments of Excellence) and partially by the University of Pisa funded project PRA_2018_81 “Wearable sensor systems: personalized analysis and data security in healthcare”.

COIN Report Number 2020025.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blank, J., Deb, K.: Pymoo: Multi-objective optimization in Python. IEEE Access 8, 89497–89509 (2020)

    Article  Google Scholar 

  2. Cheng, R., Li, M., Tian, Y., et al.: A benchmark test suite for evolutionary many-objective optimization. Complex Intell. Syst. 3(1), 67–81 (2017)

    Article  MathSciNet  Google Scholar 

  3. Cococcioni, M., Pappalardo, M., Sergeyev, Y.: Lexicographic multi-objective linear programming using grossone methodology: theory and algorithm. Appl. Math. Comput. 318, 298–311 (2018)

    MATH  Google Scholar 

  4. Cococcioni, M., Fiaschi, L.: The Big-M method with the numerical infinite \({M}\). Optim. Lett. (2020). https://doi.org/10.1007/s11590-020-01644-6

    Article  MATH  Google Scholar 

  5. Cococcioni, M., et al.: Solving the lexicographic multi-objective mixed-integer linear programming problem using branch-and-bound and grossone methodology. Commun. Nonlin. Sci. Numer. Simul. 84, 105177 (2020)

    Google Scholar 

  6. De Cosmis, S., De Leone, R.: The use of grossone in mathematical programming and operations research. Appl. Math. Comput. 218(16), 8029–8038 (2012)

    MathSciNet  MATH  Google Scholar 

  7. De Leone, R.: Nonlinear programming and grossone: quadratic programing and the role of constraint qualifications. Appl. Math. Comput. 318, 290–297 (2018)

    MATH  Google Scholar 

  8. De Leone, R., Fasano, G., Roma, M., Sergeyev, Y.D.: Iterative grossone-based computation of negative curvature directions in large-scale optimization. J. Optim. Theory Appl. 186(2), 554–589 (2020)

    Article  MathSciNet  Google Scholar 

  9. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  11. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Hoboken (2001)

    Google Scholar 

  12. Gaur, A., Khaled Talukder, A., Deb, K., Tiwari, S., Xu, S., Jones, D.: Unconventional optimization for achieving well-informed design solutions for the automobile industry. Eng. Optim. 52, 1542–1560 (2019)

    Google Scholar 

  13. Huband, S., et al.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)

    Article  Google Scholar 

  14. Lai, L., Fiaschi, L., Cococcioni, M.: Solving mixed pareto-lexicographic multi-objective optimization problems: the case of priority chains. Swarm Evol. Comput. 55, 100687 (2020)

    Google Scholar 

  15. Liao, X., Li, Q., Yang, X., Zhang, W., Li, W.: Multiobjective optimization for crash safety design of vehicles using stepwise regression model. Struct. Multi. Optim. 35(6), 561–569 (2008)

    Article  Google Scholar 

  16. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multi. Optim. 26(6), 369–395 (2004)

    Article  MathSciNet  Google Scholar 

  17. Schmiedle, F., Drechsler, N., Große, D., Drechsler, R.: Priorities in multi-objective optimization for genetic programming. In: Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, pp. 129–136. Morgan Kaufmann (2001)

    Google Scholar 

  18. Schutze, O., Esquivel, X., Lara, A., Coello, C.A.C.: Using the averaged Hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 16(4), 504–522 (2012)

    Article  Google Scholar 

  19. Seada, H., Deb, K.: U-NSGA-III: a unified evolutionary optimization procedure for single, multiple, and many objectives: proof-of-principle Results. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 34–49. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_3

    Chapter  Google Scholar 

  20. Sergeyev, Y.D.: Numerical infinities and infinitesimals: methodology, applications, and repercussions on two Hilbert problems. EMS Surv. Math. Sci 4(2), 219–320 (2017)

    Article  MathSciNet  Google Scholar 

  21. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Cococcioni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lai, L., Fiaschi, L., Cococcioni, M., Deb, K. (2021). Handling Priority Levels in Mixed Pareto-Lexicographic Many-Objective Optimization Problems. In: Ishibuchi, H., et al. Evolutionary Multi-Criterion Optimization. EMO 2021. Lecture Notes in Computer Science(), vol 12654. Springer, Cham. https://doi.org/10.1007/978-3-030-72062-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72062-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72061-2

  • Online ISBN: 978-3-030-72062-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics