Abstract
Chemical patents serve as an indispensable source of information about new discoveries of chemical compounds. The ChEMU (Cheminformatics Elsevier Melbourne University) lab addresses information extraction over chemical patents, and aims to advance the state of the art on this topic. ChEMU lab 2021, as part of the 12th Conference and Labs of the Evaluation Forum (CLEF-2021), will be the second ChEMU lab. ChEMU 2021 will provide two distinct tasks related to reference resolution in chemical patents. Task 1—Chemical Reaction Reference Resolution—focuses on paragraph-level references and aims to identify the chemical reactions or general conditions specified in one reaction description referred to by another. Task 2—Anaphora Resolution—focuses on expression-level references and aims to identify the reference relationships between expressions in chemical reaction descriptions. In this paper, we introduce ChEMU 2021, including its motivation, goals, tasks, resources, and evaluation framework.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Our main website is http://chemu.eng.unimelb.edu.au.
- 2.
Reaxys® Copyright ©2020 Elsevier Limited except certain content provided by third parties. Reaxys is a trademark of Elsevier Limited. https://www.reaxys.com.
References
Akhondi, S.A., et al.: Automatic identification of relevant chemical compounds from patents. In: Database (2019)
Bada, M., et al.: Concept annotation in the CRAFT corpus. BMC Bioinform. 13, 161 (2012). https://doi.org/10.1186/1471-2105-13-161. https://www.ncbi.nlm.nih.gov/pubmed/22776079
Baumgartner Jr, W.A., et al.: CRAFT shared tasks 2019 overview–integrated structure, semantics, and coreference. In: Proceedings of The 5th Workshop on BioNLP Open Shared Tasks, pp. 174–184 (2019)
Bregonje, M.: Patents: a unique source for scientific technical information in chemistry related industry? World Patent Inf. 27(4), 309–315 (2005)
Cohen, K.B., et al.: Coreference annotation and resolution in the Colorado Richly Annotated Full Text (CRAFT) corpus of biomedical journal articles. BMC Bioinform. 18(1), 1–14 (2017)
Dow, R.L., Liu, K.K.C., Morgan, B.P., Swick, A.G.: Glucocorticoid receptor modulators. European patent no. EP1175383B1 (2018)
Fang, B., Druckenbrodt, C., Akhondi, S.A., He, J., Baldwin, T., Verspoor, K.: ChEMU-Ref: a corpus for modeling anaphora resolution in the chemical domain. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics. Association for Computational Linguistics, April 2021
Fang, B., et al.: ChEMU-ref dataset for modeling anaphora resolution in the chemical domain (2021). https://doi.org/10.17632/r28xxr6p92
He, J., et al.: Overview of ChEMU 2020: named entity recognition and event extraction of chemical reactions from patents. In: Arampatzis, A., et al. (eds.) CLEF 2020. LNCS, vol. 12260, pp. 237–254. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58219-7_18
Hu, M., Cinciruk, D., Walsh, J.M.: Improving automated patent claim parsing: dataset, system, and experiments. arXiv preprint arXiv:1605.01744 (2016)
Krallinger, M., Leitner, F., Rabal, O., Vazquez, M., Oyarzabal, J., Valencia, A.: CHEMDNER: the drugs and chemical names extraction challenge. J. Cheminform. 7(S1), S1 (2015)
Lupu, M., Mayer, K., Kando, N., Trippe, A.J.: Current Challenges in Patent Information Retrieval, vol. 37. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-53817-3
Muresan, S., et al.: Making every SAR point count: the development of Chemistry Connect for the large-scale integration of structure and bioactivity data. Drug Discov. Today 16(23-24), 1019–1030 (2011)
Nguyen, D.Q., et al.: ChEMU: named entity recognition and event extraction of chemical reactions from patents. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12036, pp. 572–579. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45442-5_74
Nguyen, N., Kim, J.D., Tsujii, J.: Overview of BioNLP 2011 protein coreference shared task. In: Proceedings of BioNLP Shared Task 2011 Workshop, pp. 74–82 (2011)
Ohta, T., Tateisi, Y., Kim, J.D., Mima, H., Tsujii, J.: The GENIA corpus: an annotated research abstract corpus in molecular biology domain. In: Proceedings of the Second International Conference on Human Language Technology Research, pp. 82–86 (2002)
Park, K.D., et al.: Alpha-aminoamide derivative compound and pharmaceutical composition comprising same. European patent no. EP3202759A1 (2017)
Senger, S., Bartek, L., Papadatos, G., Gaulton, A.: Managing expectations: assessment of chemistry databases generated by automated extraction of chemical structures from patents. J. Cheminform. 7(1), 1–12 (2015)
Verspoor, K., et al.: ChEMU dataset for information extraction from chemical patents (2020). https://doi.org/10.17632/wy6745bjfj
Yoshikawa, H., et al.: Detecting chemical reactions in patents. In: Proceedings of the The 17th Annual Workshop of the Australasian Language Technology Association, pp. 100–110. Australasian Language Technology Association, Sydney, Australia, 4–6 December 2019. https://www.aclweb.org/anthology/U19-1014
Zhai, Z., et al.: Improving chemical named entity recognition in patents with contextualized word embeddings. In: Proceedings of the 18th BioNLP Workshop and Shared Task. pp. 328–338. Association for Computational Linguistics, Florence, Italy, August 2019. https://doi.org/10.18653/v1/W19-5035. https://www.aclweb.org/anthology/W19-5035
Acknowledgements
Funding for the ChEMU project is provided by an Australian Research Council Linkage Project, project number LP160101469, and Elsevier.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
He, J. et al. (2021). ChEMU 2021: Reaction Reference Resolution and Anaphora Resolution in Chemical Patents. In: Hiemstra, D., Moens, MF., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds) Advances in Information Retrieval. ECIR 2021. Lecture Notes in Computer Science(), vol 12657. Springer, Cham. https://doi.org/10.1007/978-3-030-72240-1_71
Download citation
DOI: https://doi.org/10.1007/978-3-030-72240-1_71
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72239-5
Online ISBN: 978-3-030-72240-1
eBook Packages: Computer ScienceComputer Science (R0)