Abstract
Modern technologies are often used in agriculture, which allow increasing yields while minimising production costs. Many tools are created to support farmers’ activities in the so-called precision agriculture consisting of adapting agrotechnical operations to changing conditions in different areas of the cultivated field. For field yield variability mapping and other precision agricultural applications is used high-resolution satellite imagery. This paper presents the possibility of monitoring the areas of crops specified by the user and informing about the hazards that appear thereby detecting areas showing vegetation degradation based on a series of satellite spectral and radar data recorded at specific points in time. This paper presents an example of the application of imaging performed by the Sentinel-1 and Sentinel-2 satellites as well as advanced imaging techniques and digital image processing for precision farming. The possibility of using satellite images to calculate indices NDVI and RVI4S1 that determine changes in vegetation in the study area was presented. Combined analysis of changes in these indicators in the analysed period may be performed to support the decision-making process and perform actions adequate to the identified situation. The research presented in this paper is conducted to determine the possibility of using combined, satellite spectral and radar data (so-called hybrid set) to detect areas of vegetative degradation in crops in the absence of an element of the spectral data series.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Passioura, J.B.: Simulation models: science, snake oil, education, or engineering? Agron. J. 88, 690–694 (1996)
Boote, K.J., Jones, J.W., Pickering, N.B.: Potential uses and limitations of crop models. Agron. J. 88, 704–716 (1996)
Ozguven, M.M.: The newest agricultural technologies. Curr. Investig. Agric. Curr. Res. 5(1), 573–580 (2018). https://doi.org/10.32474/ciacr.2018.05.000201
Singh, V., Misra, A.K.: Detection of plant leaf diseases using image segmentation and soft computing techniques. Inf. Process. Agric. 4, 41–49 (2017). https://doi.org/10.1016/j.inpa.2016.10.005
Faber, A.: System rolnictwa precyzyjnego. I. Mapy plonów, Fragmenta Agronomica 57, 4–15 (1998)
Ollinger, S.V.: Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol. 19, 375–394 (2011)
El Hajj, M., Baghdadi, N., Wigneron, J., Zribi, M., Albergel, C., Calvet, J., Fayad, I.: First vegetation optical depth mapping from sentinel-1 C-band SAR data over crop fields. Remote Sens. 11(23), 2769 (2019). https://doi.org/10.3390/rs11232769
Mantovani, E., Althoff, D.: Crop NDVI monitoring based on sentinel 1. Remote Sens. 11(12), 1441 (2019). https://doi.org/10.3390/rs11121441
Yamada, Y.: Preliminary study on the radar vegetation index (RVI) application to actual paddy fields by Alos/Palsar full-polarimetry SAR data, Conference. ISRSE36At, Berlin, Germany (2015)
Vuolo, F., Atzberger, C., Richter, K., D’Urso, G., Dash, J.: Retrieval of biophysical vegetation products from rapideye imagery. In: ISPRS TC VII Symposium – 100 Years ISPRS, XXXVIII, pp. 281–286 (2010)
Rouse, J.W., Haas, R.H., Scheel, J.A., Deering, D.W.: Monitoring vegetation systems in the great plains with ERTS. In: Proceedings, 3rd Earth Resource Technology Satellite (ERTS) Symposium, vol. 1, pp. 48–62 (1974) https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740022592.pdf
Meyer, G.E., Camargo-Neto, J.: Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agri. 63(2), 282–293 (2008)
Ruszczak, B., Smykała, K., Dziubański, K.: The detection of Alternaria solani infection on tomatoes using ensemble learning. J. Ambient Intell. Smart Environ. 12(5), 407–418 (2020). https://doi.org/10.3233/AIS-200573
Smykała, K., Ruszczak, B., Dziubański, K.: Application of ensemble learning to detect Alternaria solani infection on tomatoes cultivated under foil tunnels. In: Iglesias, C.A. (ed.) Intelligent Environments 2020. Workshop Proceedings of the 16th International Conference on Intelligent Environments, Ambient Intelligence and Smart Environments, Amsterdam, vol. 28, pp. 127–132. IOS Press (2020). ISBN 978-1-64368-090-3, https://doi.org/10.3233/aise200033
Słapek, M., Smykała, K., Ruszczak, B.: Brassica napus florescence modeling based on modified vegetation index using sentinel-2 imagery. In: Rutkowski, L. (ed) Artificial Artificial Intelligence and Soft Computing: 18th International Conference, ICAISC 2019, Zakopane, Poland, 16–20 June 2019, Proceedings, Part II, Lecture Notes In Computer Science, Springer, vol. 11509, pp. 80–90 (2019). ISBN 978-3-030-20914-8, https://doi.org/10.1007/978-3-030-20915-5_8
Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., Stefanovic, D.: Deep neural networks based recognition of plant diseases by leaf image classification. Comput. Intell. Neurosci. 2016, 11 (2016)
Banaszkiewcz, M., Lewiński, S.: Zastosowanie technik satelitarnych w rolnictwie zrównoważonym - wybrane przykłady zastosowań. Prob. Agric. Eng. PIR 2012 (VII–IX). 3(77), 109–122 (2012). ISSN 1231-0093
Moulin, S., Bondeau, A., Delecolle, R.: Review article: combining agricultural crop models and satellite observations: from field to regional scales Int. J. Remote Sens. 19, 1021–1036 (1998)
Dorigo, W.A., Zurita-Milla, R., de Wit, J.W., Brazile, J., Singh, R., Schaepman, M.E.: A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int. J. Appl. Earth Obs. Geoinf. 9, 165–193 (2007)
Koetz, B., Baret, F., Poilvé, H., Hill, J.: Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics. Remote Sens. Environ. 95, 115–124 (2005)
Vuolo, F., Atzberger, C., Richter, K., D’Urso, G., Dash J.: Retrieval of biophysical vegetation products from rapideye imagery ISPRS TC VII Symp. – 100 Years ISPRS, XXXVIII, pp. 281–286 (2010)
Wang, P., Sun, R., Zhang, J., Zhou, Y., Xie, D., Zhu, Q.: Yield estimation of winter wheat in the North China Plain using the remote-sensing–photosynthesis–yield estimation for crops (RS–P–YEC) model. Int. J. Remote Sens. 32, 6335–6348 (2011)
Crockett, M.T.: An introduction to synthetic aperture radar: a high-resolution alternative to optical imaging. https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1012&context=spacegrant
Michalski, P., Ruszczak, B., Lorente, P.J.N.: The implementation of a convolutional neural network for the detection of the transmission towers using satellite imagery. In: Świątek, J., Borzemski, L., Wilimowska, Z. (ed.) Information Systems Architecture and Technology: Proceedings of 40th Anniversary International Conference on Information Systems Architecture and Technology – ISAT 2019. Part II. Advances in Intelligent Systems and Computing, vol. 1051, pp. 287–299. Springer, Cham (2020). ISBN 978-3-030-30603-8. https://doi.org/10.1007/978-3-030-30604-5_26
Wang, R., Deng, Y.: Bistatic SAR System and Signal Processing Technology. Springer Nature (2018), ISBN 978–981-10-3078-9. https://doi.org/10.1007/2F978-981-10-3078-9
Carvalho, E.A., Ushizima, D.M., Medeirs, F.N.S.: SAR imagery segmentation by statistical region growing and hierarchical merging. Digit. Signal Process. 20(5), 1365–1378 (2010)
Singhroy, V., Moloch, K.: Characterising and monitoring rockslides from SAR techniques. Adv. Space Res. 33(3), 290–295 (2004)
Michalski, P., Ruszczak, B., Tomaszewski, M.: Convolutional neural networks implementations for computer vision, w: biomedical engineering and neuroscience. In: Hunek, W.P., Paszkiel, S. (ed.) Proceedings of the 3rd International Scientific Conference on Brain-Computer Interfaces, BCI 2018, 13–14 March, Opole, Poland. Advances in Intelligent Systems and Computing, vol. 720, pp. 98-110. Springer, Cham (2018), ISBN 978-3-319-75024-8. https://doi.org/10.1007/978-3-319-75025-5_10
Tomaszewski, M., Michalski, P., Ruszczak, B.: Detection of power line insulators on digital images with the use of laser spots. IET Image Process. 13(12), 2358–2366 (2019). https://doi.org/10.1049/iet-ipr.2018.6284
Tomaszewski, M., Michalski, P., Osuchowski, J.: Evaluation of power insulator detection efficiency with the use of limited training dataset. Appl. Sci. Basel 10(6), 1–12 (2020)
Measuring Vegetation. https://earthobservatory.nasa.gov/features/MeasuringVegetation
Rouse, J.W., Haas, R.H., Scheel, J.A., Deering, D.W.: Monitoring vegetation systems in the great plains with ERTS. In: Proceedings, 3rd Earth Resource Technology Satellite (ERTS) Symposium, vol. 1, pp. 48–62 (1974). https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740022592.pdf
Mandal, D., et al.: A Radar vegetation index for crop monitoring using compact polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 58(9), 6321–6335 (2020). https://doi.org/10.1109/TGRS.2020.2976661
Filgueiras, R., Mantovani, E.C., Althoff, D., Fernandes Filho, E.I.: Crop NDVI monitoring based on sentinel 1. Remote Sens. 11, 1441 (2019)
Juan, M., Heather, M., Yalamanchili, S.: Dual polarimetric radar vegetation index for crop growth monitoring using Sentinel-1 SAR data. Remote Sens. Environ. 247, (2020)
Bai, Z., Fang, S., Gao, J., Zhang, Y., Jin, G., Wang, S., Zhu, Y., Xu, J.: Could vegetation index be derive from synthetic aperture radar - the linear relationship between interferometric coherence and NDVI. Sci. Rep. 10, 6749 (2020)
Mandal, D.: Radar Vegetation Index for Sentinel-1 SAR data - RVI4S1 Script. https://custom-scripts.sentinel-hub.com/custom-scripts/sentinel-1/radar_vegetation_index/
Mandal, D., Kumar, V., Ratha, D., Dey, S., Bhattacharya, A., Lopez-Sanchez, J.M., McNairn, H., Rao, Y.S.: Dual polarimetric radar vegetation index for crop growth monitoring using Sentinel-1 SAR data. Remote Sens. Environ. 247, (2020). https://doi.org/10.1016/j.rse.2020.111954
Sentinel-1. https://sentinel.esa.int/web/sentinel/missions/sentinel-1
Yuan, J., Lv, X., Li, R.: A speckle filtering method based on hypothesis testing for time-series sar images. Remote Sens. 10(9), 1383 (2018). https://doi.org/10.3390/rs10091383
Lebrum, M.: An analysis and implementation of the BM3D image denoising method. IPOL J. Image Process. Line (2021), ISSN 2105-1232
Acknowledgement
The presented results were made as a part of the project “Development of an application detecting the vegetative degradation of crops based on the time series of satellite data – RPOP.01.01.00-16-0001/20”. The project is co-financed from The European Regional Development Fund under the Opole Voivodeship Regional Operational Programme (RPO WO) for the years 2014-2020, Action 1.1 Innovation in Enterprises.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tomaszewski, M., Gasz, R., Smykała, K. (2021). Monitoring Vegetation Changes Using Satellite Imaging – NDVI and RVI4S1 Indicators. In: Paszkiel, S. (eds) Control, Computer Engineering and Neuroscience. ICBCI 2021. Advances in Intelligent Systems and Computing, vol 1362. Springer, Cham. https://doi.org/10.1007/978-3-030-72254-8_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-72254-8_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72253-1
Online ISBN: 978-3-030-72254-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)