Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Monitoring Vegetation Changes Using Satellite Imaging – NDVI and RVI4S1 Indicators

  • Conference paper
  • First Online:
Control, Computer Engineering and Neuroscience (ICBCI 2021)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1362))

  • 1209 Accesses

Abstract

Modern technologies are often used in agriculture, which allow increasing yields while minimising production costs. Many tools are created to support farmers’ activities in the so-called precision agriculture consisting of adapting agrotechnical operations to changing conditions in different areas of the cultivated field. For field yield variability mapping and other precision agricultural applications is used high-resolution satellite imagery. This paper presents the possibility of monitoring the areas of crops specified by the user and informing about the hazards that appear thereby detecting areas showing vegetation degradation based on a series of satellite spectral and radar data recorded at specific points in time. This paper presents an example of the application of imaging performed by the Sentinel-1 and Sentinel-2 satellites as well as advanced imaging techniques and digital image processing for precision farming. The possibility of using satellite images to calculate indices NDVI and RVI4S1 that determine changes in vegetation in the study area was presented. Combined analysis of changes in these indicators in the analysed period may be performed to support the decision-making process and perform actions adequate to the identified situation. The research presented in this paper is conducted to determine the possibility of using combined, satellite spectral and radar data (so-called hybrid set) to detect areas of vegetative degradation in crops in the absence of an element of the spectral data series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Passioura, J.B.: Simulation models: science, snake oil, education, or engineering? Agron. J. 88, 690–694 (1996)

    Article  Google Scholar 

  2. Boote, K.J., Jones, J.W., Pickering, N.B.: Potential uses and limitations of crop models. Agron. J. 88, 704–716 (1996)

    Article  Google Scholar 

  3. Ozguven, M.M.: The newest agricultural technologies. Curr. Investig. Agric. Curr. Res. 5(1), 573–580 (2018). https://doi.org/10.32474/ciacr.2018.05.000201

  4. Singh, V., Misra, A.K.: Detection of plant leaf diseases using image segmentation and soft computing techniques. Inf. Process. Agric. 4, 41–49 (2017). https://doi.org/10.1016/j.inpa.2016.10.005

    Article  Google Scholar 

  5. Faber, A.: System rolnictwa precyzyjnego. I. Mapy plonów, Fragmenta Agronomica 57, 4–15 (1998)

    Google Scholar 

  6. Ollinger, S.V.: Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol. 19, 375–394 (2011)

    Article  Google Scholar 

  7. El Hajj, M., Baghdadi, N., Wigneron, J., Zribi, M., Albergel, C., Calvet, J., Fayad, I.: First vegetation optical depth mapping from sentinel-1 C-band SAR data over crop fields. Remote Sens. 11(23), 2769 (2019). https://doi.org/10.3390/rs11232769

    Article  Google Scholar 

  8. Mantovani, E., Althoff, D.: Crop NDVI monitoring based on sentinel 1. Remote Sens. 11(12), 1441 (2019). https://doi.org/10.3390/rs11121441

    Article  Google Scholar 

  9. Yamada, Y.: Preliminary study on the radar vegetation index (RVI) application to actual paddy fields by Alos/Palsar full-polarimetry SAR data, Conference. ISRSE36At, Berlin, Germany (2015)

    Google Scholar 

  10. Vuolo, F., Atzberger, C., Richter, K., D’Urso, G., Dash, J.: Retrieval of biophysical vegetation products from rapideye imagery. In: ISPRS TC VII Symposium – 100 Years ISPRS, XXXVIII, pp. 281–286 (2010)

    Google Scholar 

  11. Rouse, J.W., Haas, R.H., Scheel, J.A., Deering, D.W.: Monitoring vegetation systems in the great plains with ERTS. In: Proceedings, 3rd Earth Resource Technology Satellite (ERTS) Symposium, vol. 1, pp. 48–62 (1974) https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740022592.pdf

  12. Meyer, G.E., Camargo-Neto, J.: Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agri. 63(2), 282–293 (2008)

    Article  Google Scholar 

  13. Ruszczak, B., Smykała, K., Dziubański, K.: The detection of Alternaria solani infection on tomatoes using ensemble learning. J. Ambient Intell. Smart Environ. 12(5), 407–418 (2020). https://doi.org/10.3233/AIS-200573

    Article  Google Scholar 

  14. Smykała, K., Ruszczak, B., Dziubański, K.: Application of ensemble learning to detect Alternaria solani infection on tomatoes cultivated under foil tunnels. In: Iglesias, C.A. (ed.) Intelligent Environments 2020. Workshop Proceedings of the 16th International Conference on Intelligent Environments, Ambient Intelligence and Smart Environments, Amsterdam, vol. 28, pp. 127–132. IOS Press (2020). ISBN 978-1-64368-090-3, https://doi.org/10.3233/aise200033

  15. Słapek, M., Smykała, K., Ruszczak, B.: Brassica napus florescence modeling based on modified vegetation index using sentinel-2 imagery. In: Rutkowski, L. (ed) Artificial Artificial Intelligence and Soft Computing: 18th International Conference, ICAISC 2019, Zakopane, Poland, 16–20 June 2019, Proceedings, Part II, Lecture Notes In Computer Science, Springer, vol. 11509, pp. 80–90 (2019). ISBN 978-3-030-20914-8, https://doi.org/10.1007/978-3-030-20915-5_8

  16. Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., Stefanovic, D.: Deep neural networks based recognition of plant diseases by leaf image classification. Comput. Intell. Neurosci. 2016, 11 (2016)

    Article  Google Scholar 

  17. Banaszkiewcz, M., Lewiński, S.: Zastosowanie technik satelitarnych w rolnictwie zrównoważonym - wybrane przykłady zastosowań. Prob. Agric. Eng. PIR 2012 (VII–IX). 3(77), 109–122 (2012). ISSN 1231-0093

    Google Scholar 

  18. Moulin, S., Bondeau, A., Delecolle, R.: Review article: combining agricultural crop models and satellite observations: from field to regional scales Int. J. Remote Sens. 19, 1021–1036 (1998)

    Article  Google Scholar 

  19. Dorigo, W.A., Zurita-Milla, R., de Wit, J.W., Brazile, J., Singh, R., Schaepman, M.E.: A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int. J. Appl. Earth Obs. Geoinf. 9, 165–193 (2007)

    Article  Google Scholar 

  20. Koetz, B., Baret, F., Poilvé, H., Hill, J.: Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics. Remote Sens. Environ. 95, 115–124 (2005)

    Article  Google Scholar 

  21. Vuolo, F., Atzberger, C., Richter, K., D’Urso, G., Dash J.: Retrieval of biophysical vegetation products from rapideye imagery ISPRS TC VII Symp. – 100 Years ISPRS, XXXVIII, pp. 281–286 (2010)

    Google Scholar 

  22. Wang, P., Sun, R., Zhang, J., Zhou, Y., Xie, D., Zhu, Q.: Yield estimation of winter wheat in the North China Plain using the remote-sensing–photosynthesis–yield estimation for crops (RS–P–YEC) model. Int. J. Remote Sens. 32, 6335–6348 (2011)

    Article  Google Scholar 

  23. Crockett, M.T.: An introduction to synthetic aperture radar: a high-resolution alternative to optical imaging. https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1012&context=spacegrant

  24. Michalski, P., Ruszczak, B., Lorente, P.J.N.: The implementation of a convolutional neural network for the detection of the transmission towers using satellite imagery. In: Świątek, J., Borzemski, L., Wilimowska, Z. (ed.) Information Systems Architecture and Technology: Proceedings of 40th Anniversary International Conference on Information Systems Architecture and Technology – ISAT 2019. Part II. Advances in Intelligent Systems and Computing, vol. 1051, pp. 287–299. Springer, Cham (2020). ISBN 978-3-030-30603-8. https://doi.org/10.1007/978-3-030-30604-5_26

  25. Wang, R., Deng, Y.: Bistatic SAR System and Signal Processing Technology. Springer Nature (2018), ISBN 978–981-10-3078-9. https://doi.org/10.1007/2F978-981-10-3078-9

  26. Carvalho, E.A., Ushizima, D.M., Medeirs, F.N.S.: SAR imagery segmentation by statistical region growing and hierarchical merging. Digit. Signal Process. 20(5), 1365–1378 (2010)

    Article  Google Scholar 

  27. Singhroy, V., Moloch, K.: Characterising and monitoring rockslides from SAR techniques. Adv. Space Res. 33(3), 290–295 (2004)

    Article  Google Scholar 

  28. Michalski, P., Ruszczak, B., Tomaszewski, M.: Convolutional neural networks implementations for computer vision, w: biomedical engineering and neuroscience. In: Hunek, W.P., Paszkiel, S. (ed.) Proceedings of the 3rd International Scientific Conference on Brain-Computer Interfaces, BCI 2018, 13–14 March, Opole, Poland. Advances in Intelligent Systems and Computing, vol. 720, pp. 98-110. Springer, Cham (2018), ISBN 978-3-319-75024-8. https://doi.org/10.1007/978-3-319-75025-5_10

  29. Tomaszewski, M., Michalski, P., Ruszczak, B.: Detection of power line insulators on digital images with the use of laser spots. IET Image Process. 13(12), 2358–2366 (2019). https://doi.org/10.1049/iet-ipr.2018.6284

    Article  Google Scholar 

  30. Tomaszewski, M., Michalski, P., Osuchowski, J.: Evaluation of power insulator detection efficiency with the use of limited training dataset. Appl. Sci. Basel 10(6), 1–12 (2020)

    Google Scholar 

  31. Measuring Vegetation. https://earthobservatory.nasa.gov/features/MeasuringVegetation

  32. Rouse, J.W., Haas, R.H., Scheel, J.A., Deering, D.W.: Monitoring vegetation systems in the great plains with ERTS. In: Proceedings, 3rd Earth Resource Technology Satellite (ERTS) Symposium, vol. 1, pp. 48–62 (1974). https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740022592.pdf

  33. Mandal, D., et al.: A Radar vegetation index for crop monitoring using compact polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 58(9), 6321–6335 (2020). https://doi.org/10.1109/TGRS.2020.2976661

    Article  Google Scholar 

  34. Filgueiras, R., Mantovani, E.C., Althoff, D., Fernandes Filho, E.I.: Crop NDVI monitoring based on sentinel 1. Remote Sens. 11, 1441 (2019)

    Article  Google Scholar 

  35. Juan, M., Heather, M., Yalamanchili, S.: Dual polarimetric radar vegetation index for crop growth monitoring using Sentinel-1 SAR data. Remote Sens. Environ. 247, (2020)

    Article  Google Scholar 

  36. Bai, Z., Fang, S., Gao, J., Zhang, Y., Jin, G., Wang, S., Zhu, Y., Xu, J.: Could vegetation index be derive from synthetic aperture radar - the linear relationship between interferometric coherence and NDVI. Sci. Rep. 10, 6749 (2020)

    Article  Google Scholar 

  37. Mandal, D.: Radar Vegetation Index for Sentinel-1 SAR data - RVI4S1 Script. https://custom-scripts.sentinel-hub.com/custom-scripts/sentinel-1/radar_vegetation_index/

  38. Mandal, D., Kumar, V., Ratha, D., Dey, S., Bhattacharya, A., Lopez-Sanchez, J.M., McNairn, H., Rao, Y.S.: Dual polarimetric radar vegetation index for crop growth monitoring using Sentinel-1 SAR data. Remote Sens. Environ. 247, (2020). https://doi.org/10.1016/j.rse.2020.111954

    Article  Google Scholar 

  39. Sentinel-1. https://sentinel.esa.int/web/sentinel/missions/sentinel-1

  40. Yuan, J., Lv, X., Li, R.: A speckle filtering method based on hypothesis testing for time-series sar images. Remote Sens. 10(9), 1383 (2018). https://doi.org/10.3390/rs10091383

    Article  Google Scholar 

  41. Lebrum, M.: An analysis and implementation of the BM3D image denoising method. IPOL J. Image Process. Line (2021), ISSN 2105-1232

    Google Scholar 

Download references

Acknowledgement

The presented results were made as a part of the project “Development of an application detecting the vegetative degradation of crops based on the time series of satellite data – RPOP.01.01.00-16-0001/20”. The project is co-financed from The European Regional Development Fund under the Opole Voivodeship Regional Operational Programme (RPO WO) for the years 2014-2020, Action 1.1 Innovation in Enterprises.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Tomaszewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tomaszewski, M., Gasz, R., Smykała, K. (2021). Monitoring Vegetation Changes Using Satellite Imaging – NDVI and RVI4S1 Indicators. In: Paszkiel, S. (eds) Control, Computer Engineering and Neuroscience. ICBCI 2021. Advances in Intelligent Systems and Computing, vol 1362. Springer, Cham. https://doi.org/10.1007/978-3-030-72254-8_29

Download citation

Publish with us

Policies and ethics