Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Classification of Biochemical Pathway Robustness with Neural Networks for Graphs

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1400))

  • 730 Accesses

Abstract

Dynamical properties of biochemical pathways are often assessed by performing numerical (ODE-based) or stochastic simulations. These methods are often computationally very expensive and require reliable quantitative parameters, such as kinetic constants and initial concentrations, to be available. Biochemical pathways are often represented as graphs, in which nodes and edges give a qualitative description of the modeled reactions, while node and edge labels provide quantitative details such as kinetic and stoichiometric parameters.

In this paper we propose the use of a neural network for graphs to predict dynamical properties of biochemical pathways by relying only on the structure of their graph representation (expressed in terms of Petri nets). We test our new methodology on a dataset of 706 pathways downloaded from the BioModels database, focusing on the dynamical property of concentration robustness. The proposed model allows us to predict robustness directly from the pathway structure, by avoiding the burden of performing numerical or stochastic simulations. Moreover, once trained, the model could be applied to predicting robustness properties for pathways in which quantitative parameters are not available.

This work is supported by the Universitá di Pisa under the “PRA – Progetti di Ricerca di Ateneo” (Institutional Research Grants) - Project no. PRA_2020-2021_26 “Metodi Informatici Integrati per la Biomedica”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    BioModels: https://www.ebi.ac.uk/biomodels/.

  2. 2.

    This definition of layer is adapted from the Deep Learning literature, where a layer is a parameterized function applied to an input, whose parameters are learned from data [11].

  3. 3.

    A function f on an input set x is invariant with respect to a permutation \(\pi \) iff \(f(x) = f(\pi (x))\). Note that, in the case of DGNs, the input set x is a set of node embeddings.

  4. 4.

    A hop is defined as the shortest unweighted path between two nodes.

  5. 5.

    May 2019.

  6. 6.

    The DOT graph description language specification, available at: https://graphviz.gitlab.io/_pages/doc/info/lang.html.

  7. 7.

    The concentration values obtained at the end of the simulation are considered as steady state values also in the cases in which the timeout has been reached.

References

  1. Bacciu, D., Errica, F., Micheli, A., Podda, M.: A gentle introduction to deep learning for graphs. Neural Netw. 129, 203–221 (2020). https://doi.org/10.1016/j.neunet.2020.06.006

    Article  Google Scholar 

  2. Bianucci, A., Micheli, A., Sperduti, A., Starita, A.: Application of cascade correlation networks for structures to chemistry. Appl. Intell. 12, 117–147 (2000). https://doi.org/10.1023/A:1008368105614

    Article  Google Scholar 

  3. Bove, P., Micheli, A., Milazzo, P., Podda, M.: Prediction of dynamical properties of biochemical pathways with graph neural networks. In: Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 3 BIOINFORMATICS, pp. 32–43. INSTICC, SciTePress (2020). https://doi.org/10.5220/0008964700320043

  4. Duvenaud, D.K., et al.: Convolutional networks on graphs for learning molecular fingerprints. Adv. Neural. Inf. Process. Syst. 28, 2224–2232 (2015)

    Google Scholar 

  5. Fages, F., Soliman, S.: From reaction models to influence graphs and back: a theorem. In: Fisher, J. (ed.) FMSB 2008. LNCS, vol. 5054, pp. 90–102. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68413-8_7

    Chapter  MATH  Google Scholar 

  6. Frasconi, P., Gori, M., Sperduti, A.: A general framework for adaptive processing of data structures. IEEE Trans. Neural Netw. 9(5), 768–86 (1998). A publication of the IEEE Neural Networks Council

    Article  Google Scholar 

  7. Funahashi, A., Morohashi, M., Kitano, H., Tanimura, N.: CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. Biosilico 1(5), 159–162 (2003)

    Article  Google Scholar 

  8. Gilbert, D., Heiner, M., Lehrack, S.: A unifying framework for modelling and analysing biochemical pathways using Petri nets. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS, vol. 4695, pp. 200–216. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75140-3_14

    Chapter  Google Scholar 

  9. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  10. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)

    Google Scholar 

  11. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  12. Gori, R., Milazzo, P., Nasti, L.: Towards an efficient verification method for monotonicity properties of chemical reaction networks. In: Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 3: BIOINFORMATICS, pp. 250–257. INSTICC, SciTePress (2019). https://doi.org/10.5220/0007522002500257

  13. Hammer, B., Micheli, A., Sperduti, A.: Universal approximation capability of cascade correlation for structures. Neural Comput. 17(5), 1109–1159 (2005)

    Article  MathSciNet  Google Scholar 

  14. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2001). https://doi.org/10.1007/978-0-387-21606-5

    Book  MATH  Google Scholar 

  15. Haykin, S.S.: Neural Networks and Learning Machines, 3rd edn. Pearson Education, London (2009)

    Google Scholar 

  16. Hucka, M., et al.: The systems biology markup language (SBML): language specification for level 3 version 2 core. J. Integr. Bioinform. 15(1) (2018). https://doi.org/10.1515/jib-2017-0081. Article no. 20170081

  17. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning, ICML 2015, vol. 37, pp. 448–456. JMLR.org (2015)

    Google Scholar 

  18. Iooss, B., Lemaître, P.: A review on global sensitivity analysis methods. In: Dellino, G., Meloni, C. (eds.) Uncertainty Management in Simulation-Optimization of Complex Systems. ORSIS, vol. 59, pp. 101–122. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7547-8_5

    Chapter  Google Scholar 

  19. Janocha, K., Czarnecki, W.: On loss functions for deep neural networks in classification. Schedae Informaticae 25, 49–59 (2017)

    Google Scholar 

  20. Karp, P.D., Paley, S.M.: Representations of metabolic knowledge: pathways. In: ISMB, vol. 2, pp. 203–211 (1994)

    Google Scholar 

  21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations, ICLR (2015)

    Google Scholar 

  22. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations, ICLR (2017)

    Google Scholar 

  23. Kitano, H.: Biological robustness. Nat. Rev. Genet. 5(11), 826 (2004)

    Article  Google Scholar 

  24. Kitano, H.: Towards a theory of biological robustness. Mol. Syst. Biol. 3(1), 137 (2007)

    Article  Google Scholar 

  25. Larhlimi, A., Blachon, S., Selbig, J., Nikoloski, Z.: Robustness of metabolic networks: a review of existing definitions. Biosystems 106(1), 1–8 (2011)

    Article  Google Scholar 

  26. Le Novere, N., et al.: BioModels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res. 34(suppl\(\_\)1), D689–D691 (2006)

    Google Scholar 

  27. Le Novere, N., et al.: The systems biology graphical notation. Nat. Biotechnol. 27(8), 735 (2009)

    Article  Google Scholar 

  28. Li, C., et al.: BioModels database: an enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst. Biol. 4 (2010). https://doi.org/10.1186/1752-0509-4-92. Article no. 92

  29. Micheli, A.: Neural network for graphs: a contextual constructive approach. IEEE Trans. Neural Netw. 20(3), 498–511 (2009)

    Article  MathSciNet  Google Scholar 

  30. Micheli, A., Sona, D., Sperduti, A.: Contextual processing of structured data by recursive cascade correlation. IEEE Trans. Neural Netw. 15, 1396–1410 (2004)

    Article  Google Scholar 

  31. Nasti, L., Gori, R., Milazzo, P.: Formalizing a notion of concentration robustness for biochemical networks. In: Mazzara, M., Ober, I., Salaün, G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 81–97. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04771-9_8

    Chapter  Google Scholar 

  32. Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for graphs. In: Proceedings of the 33rd International Conference on Machine Learning, vol. 48, pp. 2014–2023 (2016)

    Google Scholar 

  33. Peterson, J.L.: Petri nets. ACM Comput. Surv. (CSUR) 9(3), 223–252 (1977)

    Article  Google Scholar 

  34. Reddy, V.N., Mavrovouniotis, M.L., Liebman, M.N., et al.: Petri net representations in metabolic pathways. In: ISMB, vol. 93, pp. 328–336 (1993)

    Google Scholar 

  35. Rizk, A., Batt, G., Fages, F., Soliman, S.: A general computational method for robustness analysis with applications to synthetic gene networks. Bioinformatics 25(12), i169–i178 (2009)

    Article  Google Scholar 

  36. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2009)

    Article  Google Scholar 

  37. Shinar, G., Feinberg, M.: Structural sources of robustness in biochemical reaction networks. Science 327(5971), 1389–1391 (2010)

    Article  Google Scholar 

  38. Sivakumar, K.C., Dhanesh, S.B., Shobana, S., James, J., Mundayoor, S.: A systems biology approach to model neural stem cell regulation by Notch, Shh, Wnt, and EGF signaling pathways. Omics: J. Integr. Biol. 15(10), 729–737 (2011)

    Article  Google Scholar 

  39. Somogyi, E.T., et al.: libRoadRunner: a high performance SBML simulation and analysis library. Bioinformatics 31(20), 3315–3321 (2015)

    Article  Google Scholar 

  40. Sperduti, A., Starita, A.: Supervised neural networks for the classification of structures. IEEE Trans. Neural Netw. 8(3), 714–735 (1997)

    Article  Google Scholar 

  41. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Zi, Z.: Sensitivity analysis approaches applied to systems biology models. IET Syst. Biol. 5(6), 336–346 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Milazzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Podda, M., Bove, P., Micheli, A., Milazzo, P. (2021). Classification of Biochemical Pathway Robustness with Neural Networks for Graphs. In: Ye, X., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2020. Communications in Computer and Information Science, vol 1400. Springer, Cham. https://doi.org/10.1007/978-3-030-72379-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72379-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72378-1

  • Online ISBN: 978-3-030-72379-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics