Abstract
Padding is a process used for the border treatment of data before the convolution operation in Convolutional Neural Networks. This study proposes a new type of padding designated by roll padding, which is conceived for multivariate time series analysis when using convolutional layers. The Human Activity Recognition raw time distributed dataset is used to train, test and compare four Deep Learning architectures: Long Short-Term Memory, Convolutional Neural Networks with and without roll padding, and WaveNet with roll padding. Two main findings are obtained: on the one hand, the inclusion of roll padding improves the accuracy of the basic standard Convolutional Neural Network and, on the other hand, WaveNet extended with roll padding provides the best performance result.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., Kavukcuoglu, K.: Wavenet: a generative model for raw audio (2016)
Lockhart, J.W., Weiss, G.M.: Limitations with activity recognition methodology & data sets. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, pp. 747–756. ACM (2014)
Romera-Paredes, B., Aung, M.S.H., Bianchi-Berthouze, N.: A one-vs-one classifier ensemble with majority voting for activity recognition. In: ESANN (2013)
Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: ESANN (2013)
Kaden, M., Strickert, M., Villmann, T.: A sparse kernelized matrix learning vector quantization model for human activity recognition. In: ESANN (2013)
Ronao, C.A., Cho, S.-B.: Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst. Appl. 59, 235–244 (2016)
Jiang, W., Yin, Z.: Human activity recognition using wearable sensors by deep convolutional neural networks. In: Proceedings of the 23rd ACM International Conference on Multimedia, MM 2015, pp. 1307–1310. ACM, New York (2015)
Sharma, A., Lee, Y., Chung, W.: High accuracy human activity monitoring using neural network. In: 2008 Third International Conference on Convergence and Hybrid Information Technology, vol. 1, pp. 430–435 (2008)
Ignatov, A.: Real-time human activity recognition from accelerometer data using convolutional neural networks. Appl. Soft Comput. 62, 915–922 (2018)
Qi, L., Xu, X., Wan, S., et al.: Deep learning models for real-time human activity recognition with smartphones. Mobile Netw. Appl. 25, 743–755 (2020)
Qin, Z., Zhang, Y., Meng, S., Qin, Z., Choo, K.K.R.: Imaging and fusing time series for wearable sensor-based human activity recognition. Inf. Fus. 53, 80–87 (2020)
Slim, S., Atia, A., Elfattah, M., Mostafa, M.S.M.: Survey on human activity recognition based on acceleration data. Int. J. Adv. Comput. Sci. Appl. 10(3), 84–98 (2019)
LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 253–256 (2010)
Hamey, L.G.C.: A functional approach to border handling in image processing. In: 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1–8 (2015)
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR, abs/1512.03385 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gonçalves, R., Pereira, F.L., Ribeiro, V.M., Rocha, A.P. (2021). Roll Padding and WaveNet for Multivariate Time Series in Human Activity Recognition. In: Rocha, Á., Adeli, H., Dzemyda, G., Moreira, F., Ramalho Correia, A.M. (eds) Trends and Applications in Information Systems and Technologies. WorldCIST 2021. Advances in Intelligent Systems and Computing, vol 1365. Springer, Cham. https://doi.org/10.1007/978-3-030-72657-7_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-72657-7_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72656-0
Online ISBN: 978-3-030-72657-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)