Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

EvoCraft: A New Challenge for Open-Endedness

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12694))

Abstract

This paper introduces EvoCraft, a framework for Minecraft designed to study open-ended algorithms. We introduce an API that provides an open-source Python interface for communicating with Minecraft to place and track blocks. In contrast to previous work in Minecraft that focused on learning to play the game, the grand challenge we pose here is to automatically search for increasingly complex artifacts in an open-ended fashion. Compared to other environments used to study open-endedness, Minecraft allows the construction of almost any kind of structure, including actuated machines with circuits and mechanical components. We present initial baseline results in evolving simple Minecraft creations through both interactive and automated evolution. While evolution succeeds when tasked to grow a structure towards a specific target, it is unable to find a solution when rewarded for creating a simple machine that moves. Thus, EvoCraft offers a challenging new environment for automated search methods (such as evolution) to find complex artifacts that we hope will spur the development of more open-ended algorithms. A Python implementation of the EvoCraft framework is available at: github.com/real-itu/Evocraft-py.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://grpc.io.

References

  1. Bedau, M.A., et al.: Open problems in artificial life. Artif. Life 6(4), 363–376 (2000)

    Article  Google Scholar 

  2. Bedau, M.A., Snyder, E., Packard, N.H.: A classification of long-term evolutionary dynamics. In: Artificial Life VI, pp. 228–237 (1998)

    Google Scholar 

  3. Bohm, C., Hintze, A.: Mabe (modular agent based evolver): a framework for digital evolution research. In: Artificial Life Conference Proceedings 14, pp. 76–83. MIT Press (2017)

    Google Scholar 

  4. Breukelaar, R., Emmerich, M., Bäck, T.: On interactive evolution strategies. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 530–541. Springer, Heidelberg (2006). https://doi.org/10.1007/11732242_51

    Chapter  Google Scholar 

  5. Chan, B.W.C.: Lenia-biology of artificial life. arXiv preprint arXiv:1812.05433 (2018)

  6. Cubehamster: Controllable Two Legged Walking Attack Robot - Colossus (2015). https://youtu.be/GPbE6fnNfSA, Accessed 17 Nov 2020

  7. Guss, W.H., et al.: Minerl: a large-scale dataset of minecraft demonstrations. arXiv preprint arXiv:1907.13440 (2019)

  8. Harrington, K., Pollack, J.: Escalation of memory length in finite populations. Artif. Life 25(1), 22–32 (2019)

    Article  Google Scholar 

  9. Jaderberg, M., et al.: Population based training of neural networks. arXiv preprint arXiv:1711.09846 (2017)

  10. Johnson, M., Hofmann, K., Hutton, T., Bignell, D.: The malmo platform for artificial intelligence experimentation. In: IJCAI, pp. 4246–4247 (2016)

    Google Scholar 

  11. Khalifa, A., Bontrager, P., Earle, S., Togelius, J.: Pcgrl: Procedural content generation via reinforcement learning. arXiv preprint arXiv:2001.09212 (2020)

  12. Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty search and local competition. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 211–218 (2011)

    Google Scholar 

  13. Lenski, R.E., Ofria, C., Pennock, R.T., Adami, C.: The evolutionary origin of complex features. Nature 423(6936), 139–144 (2003)

    Article  Google Scholar 

  14. Löwe, M., Risi, S.: Accelerating the evolution of cognitive behaviors through human-computer collaboration. In: Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2016, pp. 133–140 (2016)

    Google Scholar 

  15. Miconi, T., Channon, A.: A virtual creatures model for studies in artificial evolution. In: 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 565–572. IEEE (2005)

    Google Scholar 

  16. Mordvintsev, A., Randazzo, E., Niklasson, E., Levin, M.: Growing neural cellular automata. Distill 5(2), e23 (2020)

    Google Scholar 

  17. Mouret, J.B., Clune, J.: Illuminating search spaces by mapping elites. arXiv preprint arXiv:1504.04909 (2015)

  18. Ofria, C., Wilke, C.O.: Avida: a software platform for research in computational evolutionary biology. Artif. Life 10(2), 191–229 (2004)

    Article  Google Scholar 

  19. Packard, N., et al.: An overview of open-ended evolution: editorial introduction to the open-ended evolution ii special issue. Artif. Life 25(2), 93–103 (2019)

    Article  Google Scholar 

  20. Patrascu, C., Risi, S.: Artefacts: minecraft meets collaborative interactive evolution. In: 2016 IEEE Conference on Computational Intelligence and Games (CIG), pp. 1–8. IEEE (2016)

    Google Scholar 

  21. González de Prado Salas, P., Risi, S.: Collaborative interactive evolution in Minecraft. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 127–128 (2018)

    Google Scholar 

  22. Pugh, J.K., Soros, L.B., Frota, R., Negy, K., Stanley, K.O.: Major evolutionary transitions in the voxelbuild virtual sandbox game. In: Artificial Life Conference Proceedings 14, pp. 553–560. MIT Press (2017)

    Google Scholar 

  23. Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolutionary computation. Front. Rob. AI 3, 40 (2016)

    Google Scholar 

  24. Ray, T.S.: An approach to the synthesis of life. Artif. Life II(11), 371–408 (1991)

    Google Scholar 

  25. Salge, C., Green, M.C., Canaan, R., Togelius, J.: Generative design in minecraft (gdmc) settlement generation competition. In: Proceedings of the 13th International Conference on the Foundations of Digital Games, pp. 1–10 (2018)

    Google Scholar 

  26. Salge, C., et al.: The AI settlement generation challenge in minecraft. KI-Künstliche Intelligenz 34(1), 19–31 (2020)

    Article  Google Scholar 

  27. Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution Strategies as a Scalable Alternative to Reinforcement Learning. ArXiv e-prints arXiv:1703.03864 (2017)

  28. Secretan, J., et al.: Picbreeder: a case study in collaborative evolutionary exploration of design space. Evol. Comput. 19(3), 373–403 (2011)

    Article  Google Scholar 

  29. SethBling: 1fps Atari 2600 Emulator in Vanilla Minecraft 1.13 (2019). https://youtu.be/mq7T5_xH24M. Accessed 17 Nov 2020

  30. Silver, D., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017)

  31. SirBeNet: r/Minecraft - [::] Neural network for handwritten digit recognition implemented in vanilla (2020). https://www.reddit.com/r/Minecraft/comments/ak22ur/neural_network_for_handwritten_digit_recognition, Accessed 17 Nov 2020

  32. Soros, L., Stanley, K.: Identifying necessary conditions for open-ended evolution through the artificial life world of chromaria. In: Artificial Life Conference Proceedings 14, pp. 793–800. MIT Press (2014)

    Google Scholar 

  33. Spector, L., Klein, J., Feinstein, M.: Division blocks and the open-ended evolution of development, form, and behavior. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 316–323 (2007)

    Google Scholar 

  34. Stanley, K.O.: Compositional pattern producing networks: a novel abstraction of development. Genet. Program. Evolvable Mach. 8(2), 131–162 (2007)

    Article  Google Scholar 

  35. Stanley, K.O., Lehman, J., Soros, L.: Open-endedness: the last grand challenge you’ve never heard of. While open-endedness could be a force for discovering intelligence, it could also be a component of AI itself (2017)

    Google Scholar 

  36. Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artif. Life 9(2), 93–130 (2003)

    Article  Google Scholar 

  37. Steamed, K.: Minecraft Redstone Computer Word Processor (2014). https://youtu.be/g_ULtNYRCbg, Accessed 17 Nov 2020

  38. Suarez, J., Du, Y., Isola, P., Mordatch, I.: Neural mmo: a massively multiagent game environment for training and evaluating intelligent agents. arXiv preprint arXiv:1903.00784 (2019)

  39. Takagi, H.: Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proc. IEEE 89(9), 1275–1296. https://doi.org/10.1109/5.949485, http://ieeexplore.ieee.org/document/949485/

  40. Taylor, T.J.: From Artificial Evolution to Artificial Life. Ph.D. thesis, School of Informatics, College of Science and Engineering, University of Edinburgh (1999). http://hdl.handle.net/1842/361

  41. Vinyals, O., et al.: Starcraft ii: a new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782 (2017)

  42. Volunteers: Sponge (2020). https://github.com/SpongePowered

  43. Wang, R., Lehman, J., Clune, J., Stanley, K.O.: Paired open-ended trailblazer (poet): Endlessly generating increasingly complex and diverse learning environments and their solutions. arXiv preprint arXiv:1901.01753 (2019)

  44. Woolley, B.G., Stanley, K.O.: A novel human-computer collaboration: combining novelty search with interactive evolution. In: Proceedings of the 2014 conference on Genetic and evolutionary computation - GECCO 2014, pp. 233–240. ACM Press. https://doi.org/10.1145/2576768.2598353, http://dl.acm.org/citation.cfm?doid=2576768.2598353

  45. Yaeger, L.: Computational genetics, physiology, metabolism, neural systems, learning, vision, and behavior or poly world: Life in a new context. In: Sante Fe Insitute Studies in the Sciences of Complexity Proceedings, vol. 17, pp. 263–263. Addison-Wesley Publishing (1994)

    Google Scholar 

Download references

Acknowledgments

We thank Christoph Salge, Raluca D. Gaina, and Sam Devlin for helpful discussions on Minecraft. This project was partially supported by a Sapere Aude: DFF-Starting Grant (9063-00046B) and by the Danish Ministry of Education and Science, Digital Pilot Hub and Skylab Digital.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grbic, D., Palm, R.B., Najarro, E., Glanois, C., Risi, S. (2021). EvoCraft: A New Challenge for Open-Endedness. In: Castillo, P.A., Jiménez Laredo, J.L. (eds) Applications of Evolutionary Computation. EvoApplications 2021. Lecture Notes in Computer Science(), vol 12694. Springer, Cham. https://doi.org/10.1007/978-3-030-72699-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72699-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72698-0

  • Online ISBN: 978-3-030-72699-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics