Abstract
This paper introduces EvoCraft, a framework for Minecraft designed to study open-ended algorithms. We introduce an API that provides an open-source Python interface for communicating with Minecraft to place and track blocks. In contrast to previous work in Minecraft that focused on learning to play the game, the grand challenge we pose here is to automatically search for increasingly complex artifacts in an open-ended fashion. Compared to other environments used to study open-endedness, Minecraft allows the construction of almost any kind of structure, including actuated machines with circuits and mechanical components. We present initial baseline results in evolving simple Minecraft creations through both interactive and automated evolution. While evolution succeeds when tasked to grow a structure towards a specific target, it is unable to find a solution when rewarded for creating a simple machine that moves. Thus, EvoCraft offers a challenging new environment for automated search methods (such as evolution) to find complex artifacts that we hope will spur the development of more open-ended algorithms. A Python implementation of the EvoCraft framework is available at: github.com/real-itu/Evocraft-py.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Bedau, M.A., et al.: Open problems in artificial life. Artif. Life 6(4), 363–376 (2000)
Bedau, M.A., Snyder, E., Packard, N.H.: A classification of long-term evolutionary dynamics. In: Artificial Life VI, pp. 228–237 (1998)
Bohm, C., Hintze, A.: Mabe (modular agent based evolver): a framework for digital evolution research. In: Artificial Life Conference Proceedings 14, pp. 76–83. MIT Press (2017)
Breukelaar, R., Emmerich, M., Bäck, T.: On interactive evolution strategies. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 530–541. Springer, Heidelberg (2006). https://doi.org/10.1007/11732242_51
Chan, B.W.C.: Lenia-biology of artificial life. arXiv preprint arXiv:1812.05433 (2018)
Cubehamster: Controllable Two Legged Walking Attack Robot - Colossus (2015). https://youtu.be/GPbE6fnNfSA, Accessed 17 Nov 2020
Guss, W.H., et al.: Minerl: a large-scale dataset of minecraft demonstrations. arXiv preprint arXiv:1907.13440 (2019)
Harrington, K., Pollack, J.: Escalation of memory length in finite populations. Artif. Life 25(1), 22–32 (2019)
Jaderberg, M., et al.: Population based training of neural networks. arXiv preprint arXiv:1711.09846 (2017)
Johnson, M., Hofmann, K., Hutton, T., Bignell, D.: The malmo platform for artificial intelligence experimentation. In: IJCAI, pp. 4246–4247 (2016)
Khalifa, A., Bontrager, P., Earle, S., Togelius, J.: Pcgrl: Procedural content generation via reinforcement learning. arXiv preprint arXiv:2001.09212 (2020)
Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty search and local competition. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 211–218 (2011)
Lenski, R.E., Ofria, C., Pennock, R.T., Adami, C.: The evolutionary origin of complex features. Nature 423(6936), 139–144 (2003)
Löwe, M., Risi, S.: Accelerating the evolution of cognitive behaviors through human-computer collaboration. In: Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2016, pp. 133–140 (2016)
Miconi, T., Channon, A.: A virtual creatures model for studies in artificial evolution. In: 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 565–572. IEEE (2005)
Mordvintsev, A., Randazzo, E., Niklasson, E., Levin, M.: Growing neural cellular automata. Distill 5(2), e23 (2020)
Mouret, J.B., Clune, J.: Illuminating search spaces by mapping elites. arXiv preprint arXiv:1504.04909 (2015)
Ofria, C., Wilke, C.O.: Avida: a software platform for research in computational evolutionary biology. Artif. Life 10(2), 191–229 (2004)
Packard, N., et al.: An overview of open-ended evolution: editorial introduction to the open-ended evolution ii special issue. Artif. Life 25(2), 93–103 (2019)
Patrascu, C., Risi, S.: Artefacts: minecraft meets collaborative interactive evolution. In: 2016 IEEE Conference on Computational Intelligence and Games (CIG), pp. 1–8. IEEE (2016)
González de Prado Salas, P., Risi, S.: Collaborative interactive evolution in Minecraft. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 127–128 (2018)
Pugh, J.K., Soros, L.B., Frota, R., Negy, K., Stanley, K.O.: Major evolutionary transitions in the voxelbuild virtual sandbox game. In: Artificial Life Conference Proceedings 14, pp. 553–560. MIT Press (2017)
Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolutionary computation. Front. Rob. AI 3, 40 (2016)
Ray, T.S.: An approach to the synthesis of life. Artif. Life II(11), 371–408 (1991)
Salge, C., Green, M.C., Canaan, R., Togelius, J.: Generative design in minecraft (gdmc) settlement generation competition. In: Proceedings of the 13th International Conference on the Foundations of Digital Games, pp. 1–10 (2018)
Salge, C., et al.: The AI settlement generation challenge in minecraft. KI-Künstliche Intelligenz 34(1), 19–31 (2020)
Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution Strategies as a Scalable Alternative to Reinforcement Learning. ArXiv e-prints arXiv:1703.03864 (2017)
Secretan, J., et al.: Picbreeder: a case study in collaborative evolutionary exploration of design space. Evol. Comput. 19(3), 373–403 (2011)
SethBling: 1fps Atari 2600 Emulator in Vanilla Minecraft 1.13 (2019). https://youtu.be/mq7T5_xH24M. Accessed 17 Nov 2020
Silver, D., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017)
SirBeNet: r/Minecraft - [::] Neural network for handwritten digit recognition implemented in vanilla (2020). https://www.reddit.com/r/Minecraft/comments/ak22ur/neural_network_for_handwritten_digit_recognition, Accessed 17 Nov 2020
Soros, L., Stanley, K.: Identifying necessary conditions for open-ended evolution through the artificial life world of chromaria. In: Artificial Life Conference Proceedings 14, pp. 793–800. MIT Press (2014)
Spector, L., Klein, J., Feinstein, M.: Division blocks and the open-ended evolution of development, form, and behavior. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 316–323 (2007)
Stanley, K.O.: Compositional pattern producing networks: a novel abstraction of development. Genet. Program. Evolvable Mach. 8(2), 131–162 (2007)
Stanley, K.O., Lehman, J., Soros, L.: Open-endedness: the last grand challenge you’ve never heard of. While open-endedness could be a force for discovering intelligence, it could also be a component of AI itself (2017)
Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artif. Life 9(2), 93–130 (2003)
Steamed, K.: Minecraft Redstone Computer Word Processor (2014). https://youtu.be/g_ULtNYRCbg, Accessed 17 Nov 2020
Suarez, J., Du, Y., Isola, P., Mordatch, I.: Neural mmo: a massively multiagent game environment for training and evaluating intelligent agents. arXiv preprint arXiv:1903.00784 (2019)
Takagi, H.: Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proc. IEEE 89(9), 1275–1296. https://doi.org/10.1109/5.949485, http://ieeexplore.ieee.org/document/949485/
Taylor, T.J.: From Artificial Evolution to Artificial Life. Ph.D. thesis, School of Informatics, College of Science and Engineering, University of Edinburgh (1999). http://hdl.handle.net/1842/361
Vinyals, O., et al.: Starcraft ii: a new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782 (2017)
Volunteers: Sponge (2020). https://github.com/SpongePowered
Wang, R., Lehman, J., Clune, J., Stanley, K.O.: Paired open-ended trailblazer (poet): Endlessly generating increasingly complex and diverse learning environments and their solutions. arXiv preprint arXiv:1901.01753 (2019)
Woolley, B.G., Stanley, K.O.: A novel human-computer collaboration: combining novelty search with interactive evolution. In: Proceedings of the 2014 conference on Genetic and evolutionary computation - GECCO 2014, pp. 233–240. ACM Press. https://doi.org/10.1145/2576768.2598353, http://dl.acm.org/citation.cfm?doid=2576768.2598353
Yaeger, L.: Computational genetics, physiology, metabolism, neural systems, learning, vision, and behavior or poly world: Life in a new context. In: Sante Fe Insitute Studies in the Sciences of Complexity Proceedings, vol. 17, pp. 263–263. Addison-Wesley Publishing (1994)
Acknowledgments
We thank Christoph Salge, Raluca D. Gaina, and Sam Devlin for helpful discussions on Minecraft. This project was partially supported by a Sapere Aude: DFF-Starting Grant (9063-00046B) and by the Danish Ministry of Education and Science, Digital Pilot Hub and Skylab Digital.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Grbic, D., Palm, R.B., Najarro, E., Glanois, C., Risi, S. (2021). EvoCraft: A New Challenge for Open-Endedness. In: Castillo, P.A., Jiménez Laredo, J.L. (eds) Applications of Evolutionary Computation. EvoApplications 2021. Lecture Notes in Computer Science(), vol 12694. Springer, Cham. https://doi.org/10.1007/978-3-030-72699-7_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-72699-7_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72698-0
Online ISBN: 978-3-030-72699-7
eBook Packages: Computer ScienceComputer Science (R0)