Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

3D Thermal Mapping of Architectural Heritage

Up-To-Date Workflows for the Production of Three-Dimensional Thermographic Models for Built Heritage NDT

  • Conference paper
  • First Online:
Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection (EuroMed 2020)

Abstract

The combination of thermographic and geometric recording has always been an issue for architectural heritage diagnostic investigations. Multidisciplinary projects often require integrating multi-sensor information—including metric and temperature data—to extract valid conclusions regarding the state-of-preservation of historical buildings. Towards this direction, recent technological advancements in thermographic cameras and three-dimensional (3D) documentation instrumentation and software have contributed significantly, assisting the rapid creation of detailed 3D thermal-textured results, which can be exploited for non-destructive diagnostical surveys. This paper aims to briefly review and evaluate the current workflows for thermographic architectural 3D modeling, which implement state-of-the-art sensing procedures and processing techniques, while also presenting some applications on case studies of significant heritage value to help discuss current problems and identify topics for relevant future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grinzato, E., Bison, P.G., Marinetti, S.: Monitoring of ancient buildings by the thermal method. J. Cult. Herit. 3, 21–29 (2002). https://doi.org/10.1016/S1296-2074(02)01159-7

    Article  Google Scholar 

  2. Lerma, C., Mas, Á., Gil, E., Vercher, J., Torner, M.E.: Quantitative analysis procedure for building materials in historic buildings by applying infrared thermography. Russ J Nondestruct Test. 54, 601–609 (2018). https://doi.org/10.1134/S1061830918080065

    Article  Google Scholar 

  3. Avdelidis, N.P., Moropoulou, A.: Applications of infrared thermography for the investigation of historic structures. J. Cult. Herit. 5, 119–127 (2004). https://doi.org/10.1016/j.culher.2003.07.002

    Article  Google Scholar 

  4. Moropoulou, A., Labropoulos, K.C., Delegou, E.T., Karoglou, M., Bakolas, A.: Non-destructive techniques as a tool for the protection of built cultural heritage. Constr. Build. Mater. 48, 1222–1239 (2013). https://doi.org/10.1016/j.conbuildmat.2013.03.044

    Article  Google Scholar 

  5. Volinia, M.: Integration of qualitative and quantitative infrared surveys to study the plaster conditions of Valentino Castle. Presented at the AeroSense 2000, Orlando, FL March 30 (2000). https://doi.org/10.1117/12.381566.

  6. Lerma, J.L., Cabrelles, M., Portalés, C.: Multitemporal thermal analysis to detect moisture on a building façade. Constr. Build. Mater. 25, 2190–2197 (2011). https://doi.org/10.1016/j.conbuildmat.2010.10.007

    Article  Google Scholar 

  7. Brooke, C.: Thermal imaging for the archaeological investigation of historic buildings. Remote Sens. 10, 1401 (2018). https://doi.org/10.3390/rs10091401

    Article  Google Scholar 

  8. Glavaš, H., Hadzima-Nyarko, M., Buljan, I.H., Barić, T.: Locating hidden elements in walls of cultural heritage buildings by using infrared thermography. Buildings 9, 32 (2019). https://doi.org/10.3390/buildings9020032

    Article  Google Scholar 

  9. Georgopoulos, A.: Data acquisition for the geometric documentation of cultural heritage. In: Ioannides, M., Magnenat-Thalmann, N., Papagiannakis, G. (eds.) Mixed Reality and Gamification for Cultural Heritage, pp. 29–73. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-49607-8_2.

  10. Chiabrando, F., Sammartano, G., Spanò, A., Spreafico, A.: Hybrid 3D models: when geomatics innovations meet extensive built heritage complexes. IJGI 8, 124 (2019). https://doi.org/10.3390/ijgi8030124

    Article  Google Scholar 

  11. Costanzo, A., Minasi, M., Casula, G., Musacchio, M., Buongiorno, M.: Combined use of terrestrial laser scanning and IR thermography applied to a historical building. Sensors 15, 194–213 (2014). https://doi.org/10.3390/s150100194

    Article  Google Scholar 

  12. Mileto, C., Vegas, F., Lerma, J.L.: Multidisciplinary studies, crossreading and transversal use of thermography: the castle of Monzón (Huesca) as a case study. In: Editorial Universitat Politècnica de València (ed.) Modern Age Fortifications of the Mediterranean Coast – Defensive architecture of the Mediterranean (FORTMED2015). UPV Press, Valencia (2015). https://doi.org/10.4995/FORTMED2015.2015.1786.

  13. Spanò, A., Volinia, M., Girotto, M.: Spatial data and temperature: relationship to deepen. integrated methods for advanced architectural diagnosis and metric documentation. In: Marabelli, M., Parisi, C., Buzzanca, G., Paradisi, A., (eds.) 8th International Conference on Non Destructive Investigations and Microanalysis for the Diagnostics and Conservation of the Cultural and Environmental Heritage, pp. 405–412. Italian Society for Non-Destructive Testing Monitoring Diagnostics AIPnD, Brescia (2005)

    Google Scholar 

  14. Zalama, E., Gómez-García-Bermejo, J., Llamas, J., Medina, R.: An effective texture mapping approach for 3D models obtained from laser scanner data to building documentation: an effective texture mapping approach. Comput.-Aided Civil Infrastruct. Eng. 26, 381–392 (2011). https://doi.org/10.1111/j.1467-8667.2010.00699.x

    Article  Google Scholar 

  15. Hoegner, L., Stilla, U.: Mobile thermal mapping for matching of infrared images with 3D building models and 3D point clouds. Quant. InfraRed Thermography J. 1–19 (2018). https://doi.org/10.1080/17686733.2018.1455129.

  16. Lagüela, S., Díaz-Vilariño, L., Martínez, J., Armesto, J.: Automatic thermographic and RGB texture of as-built BIM for energy rehabilitation purposes. Autom. Constr. 31, 230–240 (2013). https://doi.org/10.1016/j.autcon.2012.12.013

    Article  Google Scholar 

  17. González-Aguilera, D., Rodriguez-Gonzalvez, P., Armesto, J., Lagüela, S.: Novel approach to 3D thermography and energy efficiency evaluation. Energy Buildings 54, 436–443 (2012). https://doi.org/10.1016/j.enbuild.2012.07.023

    Article  Google Scholar 

  18. Borrmann, D., Elseberg, J., Nüchter, A.: Thermal 3D mapping of building façades. In: Lee, S., Cho, H., Yoon, K.-J., and Lee, J. (eds.) Intelligent Autonomous Systems 12, pp. 173–182. Springer Berlin Heidelberg, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33926-4_16.

  19. Merchán, P., Merchán, M.J., Salamanca, S., Adán, A.: Application of multisensory technology for resolution of problems in the field of research and preservation of cultural heritage. In: Ioannides, M., Martins, J., Žarnić, R., Lim, V. (eds.) Advances in Digital Cultural Heritage. LNCS, vol. 10754, pp. 32–47. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75789-6_3

    Chapter  Google Scholar 

  20. Luhmann, T., Piechel, J., Roelfs, T.: Geometric calibration of thermographic cameras. In: Kuenzer, C., Dech, S. (eds.) Thermal Infrared Remote Sensing, pp. 27–42. Springer Netherlands, Dordrecht (2013). https://doi.org/10.1007/978-94-007-6639-6_2.

  21. Franzen, C., Siedler, G., Franzen, C., Vetter, S.: Orthogonal IRT imaging. In: 2013 Digital Heritage International Congress (DigitalHeritage), pp. 633–636. IEEE, Marseille, France (2013). https://doi.org/10.1109/DigitalHeritage.2013.6743805.

  22. Hemmleb, M., Wiedemann, A.: Digital rectification and generation of orthoimages in architectural photogrammetry. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXII-5C1B-1997, 261–267 (1997)

    Google Scholar 

  23. Santagati, C., Inzerillo, L., Di Paola, F.: Image-based modeling techniques for architectural heritage 3D digitalization: Limits and potentialities. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XL-5/W2, 555–560 (2013). https://doi.org/10.5194/isprsarchives-XL-5-W2-555-2013.

  24. González-Aguilera, D., Lagüela, S., Rodríguez-Gonzálvez, P., Hernández-López, D.: Image-based thermographic modeling for assessing energy efficiency of buildings façades. Energy Buildings 65, 29–36 (2013). https://doi.org/10.1016/j.enbuild.2013.05.040

    Article  Google Scholar 

  25. Dlesk, A., Vach, K., Holubec, P.: Usage of photogrammetric processing of thermal images for civil engineers. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLII–5, 99–103 (2018). https://doi.org/10.5194/isprs-archives-XLII-5-99-2018.

  26. Lagüela, S., Díaz-Vilariño, L., Roca, D., Filgueira, A.: In: Riveiro, B., Solla, M. (eds.) Non-Destructive Techniques for the Evaluation of Structures and Infrastructure, pp. 233–252. CRC Press (2016). https://doi.org/10.1201/b19024.

  27. Previtali, M., Barazzetti, L., Redaelli, V., Scaioni, M., Rosina, E.: Rigorous procedure for mapping thermal infrared images on three-dimensional models of building façades. J. Appl. Remote Sens. 7, 073503 (2013). https://doi.org/10.1117/1.JRS.7.073503

    Article  Google Scholar 

  28. Lin, D., Jarzabek-Rychard, M., Tong, X., Maas, H.-G.: Fusion of thermal imagery with point clouds for building façade thermal attribute mapping. ISPRS J. Photogramm. Remote. Sens. 151, 162–175 (2019). https://doi.org/10.1016/j.isprsjprs.2019.03.010

    Article  Google Scholar 

  29. Adamopoulos, E., Volinia, M., Girotto, M., Rinaudo, F.: Three-dimensional thermal mapping from IRT images for rapid architectural heritage NDT. Buildings 10, 187 (2020). https://doi.org/10.3390/buildings10100187

    Article  Google Scholar 

  30. Fernández-Hernandez, J., González-Aguilera, D., Rodríguez-Gonzálvez, P., Mancera Taboada, J.: Image-based modelling from unmanned aerial vehicle (UAV) photogrammetry: an effective, low-cost tool for archaeological applications. Archaeometry 57(1), 128–145 (2015). https://doi.org/10.1111/arcm.12078

    Article  Google Scholar 

  31. Javadnejad, F., Gillins, D.T., Parrish, C.E., Slocum, R.K.: A photogrammetric approach to fusing natural colour and thermal infrared UAS imagery in 3D point cloud generation. Int. J. Remote Sens. 41(1), 211–237 (2019). https://doi.org/10.1080/01431161.2019.1641241

    Article  Google Scholar 

  32. Gonzalez-Aguilera, D., et al.: GRAPHOS – Open-source software for photogrammetric applications. Photogram. Rec. 33(161), 11–29 (2018). https://doi.org/10.1111/phor.12231

    Article  Google Scholar 

  33. Jarząbek-Rychard, M., Lin, D., Maas, H.G.: Supervised detection of façade openings in 3D point clouds with thermal attributes. Remote Sens. 12(3), 543 (2020). https://doi.org/10.3390/rs12030543

    Article  Google Scholar 

  34. Patrucco, G., Cortese, G., Tonolo, F.G., Spanò, A.: Thermal and optical data fusion supporting built heritage analyses. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLIII-B3, 619–626 (2020). https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-619-2020

  35. Wakeford, Z.E., Chmielewska, M., Hole, M.J., Howell, J.A.: Combining thermal imaging with photogrammetry of an active volcano using UAV: an example from Stromboli Italy. Photogram. Rec. 34(168), 445–466 (2019). https://doi.org/10.1111/phor.12301

    Article  Google Scholar 

  36. Sammartano, G., Chiabrando, F., Spanò, A.: Oblique images and direct photogrammetry with a fixed wing platform: first test and results in Hierapolis of Phrygia (TK). Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLIII-B2, 75–82 (2020). https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-75-2020

  37. Hill, A.C., Laugier, E.J., Casana, J.: Archaeological remote sensing using multi-temporal, drone-acquired thermal and near infrared (NIR) imagery: a case study at the enfield shaker village new hampshire. Remote Sens. 12(4), 690 (2020). https://doi.org/10.3390/rs12040690

    Article  Google Scholar 

Download references

Acknowledgments

This project has partially received funding from the European Union’s Framework Program for Research and Innovation Horizon 2020 (2014–2020) under the Marie-Skłodowska Curie Grant (Agreement 754511) and from the Compagnia di San Paolo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efstathios Adamopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adamopoulos, E. et al. (2021). 3D Thermal Mapping of Architectural Heritage. In: Ioannides, M., Fink, E., Cantoni, L., Champion, E. (eds) Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection. EuroMed 2020. Lecture Notes in Computer Science(), vol 12642. Springer, Cham. https://doi.org/10.1007/978-3-030-73043-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73043-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73042-0

  • Online ISBN: 978-3-030-73043-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics