Abstract
This paper describes the parameter setting for the Ant Colony Optimization (ACO) algorithm to find optimal solutions for the Travelling Salesman Problem (TSP). The TSP is a classical combinatorial optimization problem classified as NP-hard. The ACO algorithm, with the correct parameter setting, is known for good performance on NP-hard problems. According to the number of cities in the TSP the parameters of the ACO algorithms must be changed and the size of the ant colony adjusted. This paper analyzes parameter tuning in ACO and suggests specific parameter settings. The results are compared with already published recommendations. It is shown that the existing results can be significantly improved.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cheong, P.Y., Aggarwal, D., Hanne, T., Dornberger, R.: Variation of ant colony optimization parameters for solving the travelling salesman problem. In: 2017 IEEE 4th International Conference on Soft Computing & Machine Intelligence (ISCMI), Port Louis, 2017, pp. 60–65 (2017). https://doi.org/10.1109/ISCMI.2017.8279598
Rochak, G.: Solving travelling salesman problem using ant colony optimization. GitHub.com (2019)
Min, B., Shipin, Y., Yunchen, X., Lijuan, L.: An improved ant colony algorithm for traveling salesman problem. In: 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chengdu, China, pp. 1046–1050 (2019). https://doi.org/10.1109/IAEAC47372.2019.8997589
Ratanavilisagul, C.: Modified ant colony optimization with pheromone mutation for travelling salesman problem. In: 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Phuket, 2017, pp. 411–414 (2017)
Shetty, A., Shetty, A., Puthusseri, K.S., Shankaramani, R.: An improved ant colony optimization algorithm: Minion Ant (MAnt) and its application on TSP. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, pp. 1219–1225 (2018)
Syambas, N.R., Salsabila, S., Suranegara, G.M.: Fast heuristic algorithm for travelling salesman problem. In: 2017 11th International Conference on Telecommunication Systems Services and Applications (TSSA), Lombok, pp. 1–5 (2017)
Wong, K.Y., Komarudin, K.: Parameter tuning for ant colony optimization: a review. In: 2008 International Conference on Computer and Communication Engineering, Kuala Lumpur, pp. 542–545 (2008). https://doi.org/https://doi.org/10.1109/ICCCE.2008.4580662
Siemiński, A.: Ant colony optimization parameter evaluation. In: Zgrzywa, A., Choroś, K., Siemiński, A. (eds.) Multimedia and Internet Systems, pp. 143–153. Springer, Berlin (2013)
Dorigo, M., Di Caro, G.: Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, vol. 2, pp. 1470–1477 (1999). https://doi.org/10.1109/CEC.1999.782657
Gaertner, D., Clark, K.: On optimal parameters for ant colony optimization algorithms. In: Proceedings of the 2005 International Conference on Artificial Intelligence, ICAI 2005, vol. 1, pp. 83–89 (2005)
Hao, Z., Cai, R., Huang, H.: An adaptive parameter control strategy for ACO. In: 2006 International Conference on Machine Learning and Cybernetics, Dalian, China, 2006, pp. 203–206 (2006). https://doi.org/10.1109/ICMLC.2006.258954
Zuse Institute Berlin (ZIB): MP-TESTDATA - The TSPLIB Symmetric Traveling Salesman Problem Instances. https://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/. Accessed 20 May 2020
CRAN: The Comprehensive R Archive Network. https://cran.r-project.org/. Accessed 10 June 2020
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kempter, P., Schmitz, M.P., Hanne, T., Dornberger, R. (2021). Parameter Selection for Ant Colony Optimization for Solving the Travelling Salesman Problem Based on the Problem Size. In: Abraham, A., Hanne, T., Castillo, O., Gandhi, N., Nogueira Rios, T., Hong, TP. (eds) Hybrid Intelligent Systems. HIS 2020. Advances in Intelligent Systems and Computing, vol 1375. Springer, Cham. https://doi.org/10.1007/978-3-030-73050-5_61
Download citation
DOI: https://doi.org/10.1007/978-3-030-73050-5_61
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-73049-9
Online ISBN: 978-3-030-73050-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)