Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-scale Gated Inpainting Network with Patch-Wise Spacial Attention

  • Conference paper
  • First Online:
Database Systems for Advanced Applications. DASFAA 2021 International Workshops (DASFAA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12680))

Included in the following conference series:

  • 1086 Accesses

Abstract

Recently, deep-model-based image inpainting methods have achieved promising results in the realm of image processing. However, the existing methods produce fuzzy textures and distorted structures due to ignoring the semantic relevance and feature continuity of the holes region. To address this challenge, we propose a detailed depth generation model (GS-Net) equipped with a Multi-Scale Gated Holes Feature Inpainting module (MG) and a Patch-wise Spacial Attention module (PSA). Initially, the MG module fills the hole area globally and concatenates to the input feature map. Then, the module utilizes a multi-scale gated strategy to adaptively guide the information propagation at different scales. We further design the PSA module, which optimizes the local feature mapping relations step by step to clarify the image texture information. Not only preserving the semantic correlation among the features of the holes, the methods can also effectively predict the missing part of the holes while keeping the global style consistency. Finally, we extend the spatially discounted weight to the irregular holes and assign higher weights to the spatial points near the effective areas to strengthen the constraint on the hole center. The extensive experimental results on Places2 and CelebA have revealed the superiority of the proposed approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a randomized correspondence algorithm for structural image editing. TOG 28(3), 24:1–24:11 (2009)

    Google Scholar 

  2. Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G., Verdera, J.: Filling-in by joint interpolation of vector fields and gray levels. IEEE Trans. Image Process. 10(8), 1200–1211 (2018)

    Article  MathSciNet  Google Scholar 

  3. Criminisi, A., Pérez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. IEEE TIP 13(9), 1200–1212 (2004)

    Google Scholar 

  4. Wilczkowiak, M., Brostow, G. J., Tordoff, B., Cipolla, R.: Hole filling through photomontage. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 492–501. British Machine Vision Association, Oxford (2005)

    Google Scholar 

  5. Shetty, R., Fritz, M., Schiele, B.: Adversarial scene editing: automatic object removal from weak supervision. In: Thirty-second Conference on Neural Information Processing Systems, pp. 7717–7727. Curran Associates, Montréal Canada (2018)

    Google Scholar 

  6. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T. S.: Generative image inpainting with contextual attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5505–5514 (2018)

    Google Scholar 

  7. Wang, N., Li, J., Zhang, L., Du, B.: Musical: multi-scale image contextual attention learning for inpainting. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI), pp. 3748–3754 (2019)

    Google Scholar 

  8. Liu, G., Reda, F.A., Shih, K.J., Wang, T.-C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_6

    Chapter  Google Scholar 

  9. Zhou, T., Ding, C., Lin, S., Wang, X., Tao, D.: Learning oracle attention for high-fidelity face completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7680–7689 (2020)

    Google Scholar 

  10. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM TOG 36(4), 1–4 (2017)

    Article  Google Scholar 

  11. Yu, T., et al.: Region normalization for image inpainting. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 12733–12740 (2020)

    Google Scholar 

  12. Liu, H., Jiang, B., Xiao, Y., Yang, C.: Coherent semantic attention for image inpainting. In: ICCV, pp. 4170–4179 (2019)

    Google Scholar 

  13. Yang, C., Lu, X., Lin, Z., Shechtman, E., Wang, O., Li, H.: High-resolution image inpainting using multi-scale neural patch synthesis. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6721–6729 (2017)

    Google Scholar 

  14. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In Proceedings of ICCV, pp. 4471–4480 (2019)

    Google Scholar 

  15. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2536–2544 (2016)

    Google Scholar 

  16. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7132–7141 (2018)

    Google Scholar 

  17. Nazeri, K., Ng, E., Joseph, T., Qureshi, F., Ebrahimi, M.: Edgeconnect: structure guided image inpainting using edge prediction. In Proceedings of ICCV Workshops (2019)

    Google Scholar 

  18. Xiong, W., et al.: Foreground-aware image inpainting. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5840–5848 (2019)

    Google Scholar 

  19. Yan, Z., Li, X., Li, M., Zuo, W., Shan, S.: Shift-net: image inpinting via deep feature rearrangement. In: Proceedings of ECCV, pp. 3–19 (2018)

    Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Levin, A., Zomet, A., Weiss, Y.: Learning how to inpaint from global image statistics. In: Proceedings of International Conference on Computer Vision (ICCV), pp. 305–312 (2003)

    Google Scholar 

  22. Ding, D., Ram, S., Rodríguez, J.J.: Image inpainting using nonlocal texture matching and nonlinear filtering. IEEE Trans. Image Process. 28(4), 1705–1719 (2018)

    Article  MathSciNet  Google Scholar 

  23. Snelgrove, X.: High-resolution multi-scale neural texture synthesis. In: SIGGRAPH Asia Technical Briefs, pp. 1–4 (2017)

    Google Scholar 

  24. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M.: Generative adversarial networks. In: NIPS, pp. 2672–2680 (2014)

    Google Scholar 

  25. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: A10 million image database for scene recognition. IEEE TPAMI 40(6), 1452–1464 (2018)

    Article  Google Scholar 

  26. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 3730–3738 (2014)

    Google Scholar 

  27. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  28. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  30. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  31. Li, J., Wang, N., Zhang, L., Du, B., Tao, D.: Recurrent feature reasoning for image inpainting. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7760–7768 (2020)

    Google Scholar 

  32. Zheng, C., Cham, T. J., Cai, J.: Pluralistic image completion. In: CVPR, pp. 1438–1447 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, X. et al. (2021). Multi-scale Gated Inpainting Network with Patch-Wise Spacial Attention. In: Jensen, C.S., et al. Database Systems for Advanced Applications. DASFAA 2021 International Workshops. DASFAA 2021. Lecture Notes in Computer Science(), vol 12680. Springer, Cham. https://doi.org/10.1007/978-3-030-73216-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73216-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73215-8

  • Online ISBN: 978-3-030-73216-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics