Abstract
Recently, deep-model-based image inpainting methods have achieved promising results in the realm of image processing. However, the existing methods produce fuzzy textures and distorted structures due to ignoring the semantic relevance and feature continuity of the holes region. To address this challenge, we propose a detailed depth generation model (GS-Net) equipped with a Multi-Scale Gated Holes Feature Inpainting module (MG) and a Patch-wise Spacial Attention module (PSA). Initially, the MG module fills the hole area globally and concatenates to the input feature map. Then, the module utilizes a multi-scale gated strategy to adaptively guide the information propagation at different scales. We further design the PSA module, which optimizes the local feature mapping relations step by step to clarify the image texture information. Not only preserving the semantic correlation among the features of the holes, the methods can also effectively predict the missing part of the holes while keeping the global style consistency. Finally, we extend the spatially discounted weight to the irregular holes and assign higher weights to the spatial points near the effective areas to strengthen the constraint on the hole center. The extensive experimental results on Places2 and CelebA have revealed the superiority of the proposed approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a randomized correspondence algorithm for structural image editing. TOG 28(3), 24:1–24:11 (2009)
Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G., Verdera, J.: Filling-in by joint interpolation of vector fields and gray levels. IEEE Trans. Image Process. 10(8), 1200–1211 (2018)
Criminisi, A., Pérez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. IEEE TIP 13(9), 1200–1212 (2004)
Wilczkowiak, M., Brostow, G. J., Tordoff, B., Cipolla, R.: Hole filling through photomontage. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 492–501. British Machine Vision Association, Oxford (2005)
Shetty, R., Fritz, M., Schiele, B.: Adversarial scene editing: automatic object removal from weak supervision. In: Thirty-second Conference on Neural Information Processing Systems, pp. 7717–7727. Curran Associates, Montréal Canada (2018)
Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T. S.: Generative image inpainting with contextual attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5505–5514 (2018)
Wang, N., Li, J., Zhang, L., Du, B.: Musical: multi-scale image contextual attention learning for inpainting. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI), pp. 3748–3754 (2019)
Liu, G., Reda, F.A., Shih, K.J., Wang, T.-C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_6
Zhou, T., Ding, C., Lin, S., Wang, X., Tao, D.: Learning oracle attention for high-fidelity face completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7680–7689 (2020)
Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM TOG 36(4), 1–4 (2017)
Yu, T., et al.: Region normalization for image inpainting. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 12733–12740 (2020)
Liu, H., Jiang, B., Xiao, Y., Yang, C.: Coherent semantic attention for image inpainting. In: ICCV, pp. 4170–4179 (2019)
Yang, C., Lu, X., Lin, Z., Shechtman, E., Wang, O., Li, H.: High-resolution image inpainting using multi-scale neural patch synthesis. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6721–6729 (2017)
Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In Proceedings of ICCV, pp. 4471–4480 (2019)
Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2536–2544 (2016)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7132–7141 (2018)
Nazeri, K., Ng, E., Joseph, T., Qureshi, F., Ebrahimi, M.: Edgeconnect: structure guided image inpainting using edge prediction. In Proceedings of ICCV Workshops (2019)
Xiong, W., et al.: Foreground-aware image inpainting. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5840–5848 (2019)
Yan, Z., Li, X., Li, M., Zuo, W., Shan, S.: Shift-net: image inpinting via deep feature rearrangement. In: Proceedings of ECCV, pp. 3–19 (2018)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Levin, A., Zomet, A., Weiss, Y.: Learning how to inpaint from global image statistics. In: Proceedings of International Conference on Computer Vision (ICCV), pp. 305–312 (2003)
Ding, D., Ram, S., RodrÃguez, J.J.: Image inpainting using nonlocal texture matching and nonlinear filtering. IEEE Trans. Image Process. 28(4), 1705–1719 (2018)
Snelgrove, X.: High-resolution multi-scale neural texture synthesis. In: SIGGRAPH Asia Technical Briefs, pp. 1–4 (2017)
Goodfellow, I.J., Pouget-Abadie, J., Mirza, M.: Generative adversarial networks. In: NIPS, pp. 2672–2680 (2014)
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: A10 million image database for scene recognition. IEEE TPAMI 40(6), 1452–1464 (2018)
Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 3730–3738 (2014)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Li, J., Wang, N., Zhang, L., Du, B., Tao, D.: Recurrent feature reasoning for image inpainting. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7760–7768 (2020)
Zheng, C., Cham, T. J., Cai, J.: Pluralistic image completion. In: CVPR, pp. 1438–1447 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Hu, X. et al. (2021). Multi-scale Gated Inpainting Network with Patch-Wise Spacial Attention. In: Jensen, C.S., et al. Database Systems for Advanced Applications. DASFAA 2021 International Workshops. DASFAA 2021. Lecture Notes in Computer Science(), vol 12680. Springer, Cham. https://doi.org/10.1007/978-3-030-73216-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-73216-5_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-73215-8
Online ISBN: 978-3-030-73216-5
eBook Packages: Computer ScienceComputer Science (R0)