Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Identification of COVID-19 Related Fake News via Neural Stacking

  • Conference paper
  • First Online:
Combating Online Hostile Posts in Regional Languages during Emergency Situation (CONSTRAINT 2021)

Abstract

Identification of Fake News plays a prominent role in the ongoing pandemic, impacting multiple aspects of day-to-day life. In this work we present a solution to the shared task titled COVID19 Fake News Detection in English, scoring the 50th place amongst 168 submissions. The solution was within 1.5% of the best performing solution. The proposed solution employs a heterogeneous representation ensemble, adapted for the classification task via an additional neural classification head comprised of multiple hidden layers. The paper consists of detailed ablation studies further displaying the proposed method’s behavior and possible implications. The solution is freely available.

https://gitlab.com/boshko.koloski/covid19-fake-news

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/OpaqueRelease/ReEx.

References

  1. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  2. Dumais, S.T.: Latent semantic analysis. Ann. Rev. Inf. Sci. Technol. 38(1), 188–230 (2004). https://doi.org/10.1002/aris.1440380105, https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/aris.1440380105

  3. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions (2009)

    Google Scholar 

  4. Jwa, H., Oh, D., Park, K., Kang, J.M., Lim, H.: exBAKE: automatic fake news detection model based on bidirectional encoder representations from transformers (BERT). Appl. Sci. 9(19), 4062 (2019)

    Article  Google Scholar 

  5. Koloski, B., Pollak, S., Škrlj, B.: Multilingual detection of fake news spreaders via sparse matrix factorization. In: CLEF (2020)

    Google Scholar 

  6. Loper, E., Bird, S.: NLTK: the natural language toolkit. In: Proceedings of the ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing and Computational Linguistics - Volume 1, pp. 63–70. ETMTNLP 2002, Association for Computational Linguistics, USA (2002). https://doi.org/10.3115/1118108.1118117

  7. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., et al., (eds.) Advances in Neural Information Processing Systems 30, pp. 4765–4774. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

  8. Martinc, M., Skrlj, B., Pollak, S.: Multilingual gender classification with multi-view deep learning: notebook for PAN at CLEF 2018. In: Cappellato, L., Ferro, N., Nie, J., Soulier, L. (eds.) Working Notes of CLEF 2018 - Conference and Labs of the Evaluation Forum, Avignon, France, 10–14 September 2018. CEUR Workshop Proceedings, vol. 2125. CEUR-WS.org (2018). http://ceur-ws.org/Vol-2125/paper_156.pdf

  9. Ji, L., Wang, Y., Shi, B., Zhang, D., Wang, Z., Yan, J.: Microsoft concept graph: mining semantic concepts for short text understanding. Data Intell. 1, 262–294 (2019)

    Article  Google Scholar 

  10. Patwa, P., et al.: Overview of constraint 2021 shared tasks: detecting English covid-19 fake news and Hindi hostile posts. In: Chakraborty, T., Shu, K., Bernard, R., Liu, H., Akhtar, M.S. (eds.) CONSTRAINT 2021, CCIS 1402, pp. 42–53. Springer, Cham (2021)

    Google Scholar 

  11. Patwa, P., et al.: Fighting an infodemic: Covid-19 fake news dataset. arXiv preprint arXiv:2011.03327 (2020)

  12. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Princeton University: About wordnet (2010)

    Google Scholar 

  14. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using siamese BERT-networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, November 2019. https://arxiv.org/abs/1908.10084

  15. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. CoRR 1910.01108 (2019)

    Google Scholar 

  16. Shannon, P., et al.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003)

    Article  Google Scholar 

  17. Shao, C., Ciampaglia, G.L., Varol, O., Yang, K.C., Flammini, A., Menczer, F.: The spread of low-credibility content by social bots. Nature Commun. 9(1), 1–9 (2018)

    Article  Google Scholar 

  18. Shu, K., Bernard, H.R., Liu, H.: Studying fake news via network analysis: detection and mitigation. In: Agarwal, N., Dokoohaki, N., Tokdemir, S. (eds.) Emerging Research Challenges and Opportunities in Computational Social Network Analysis and Mining. LNSN, pp. 43–65. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-94105-9_3

    Chapter  Google Scholar 

  19. Škrlj, B., Martinc, M., Kralj, J., Lavrač, N., Pollak, S.: tax2vec: constructing interpretable features from taxonomies for short text classification. Comput. Speech Lang. 65, 101104 (2020). https://doi.org/10.1016/j.csl.2020.101104, http://www.sciencedirect.com/science/article/pii/S0885230820300371

Download references

Acknowledgements

The work of the last author was funded by the Slovenian Research Agency (ARRS) through a young researcher grant. The work of other authors was supported by the Slovenian Research Agency core research programme Knowledge Technologies (P2-0103) and the ARRS funded research projects Semantic Data Mining for Linked Open Data (ERC Complementary Scheme, N2-0078) and Computer-assisted multilingual news discourse analysis with contextual embeddings - J6-2581). The work was also supported by European Union’s Horizon 2020 research and innovation programme under grant agreement No 825153, project EMBEDDIA (Cross-Lingual Embeddings for Less-Represented Languages in European News Media).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boshko Koloski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koloski, B., Stepišnik-Perdih, T., Pollak, S., Škrlj, B. (2021). Identification of COVID-19 Related Fake News via Neural Stacking. In: Chakraborty, T., Shu, K., Bernard, H.R., Liu, H., Akhtar, M.S. (eds) Combating Online Hostile Posts in Regional Languages during Emergency Situation. CONSTRAINT 2021. Communications in Computer and Information Science, vol 1402. Springer, Cham. https://doi.org/10.1007/978-3-030-73696-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73696-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73695-8

  • Online ISBN: 978-3-030-73696-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics