Abstract
Identification of Fake News plays a prominent role in the ongoing pandemic, impacting multiple aspects of day-to-day life. In this work we present a solution to the shared task titled COVID19 Fake News Detection in English, scoring the 50th place amongst 168 submissions. The solution was within 1.5% of the best performing solution. The proposed solution employs a heterogeneous representation ensemble, adapted for the classification task via an additional neural classification head comprised of multiple hidden layers. The paper consists of detailed ablation studies further displaying the proposed method’s behavior and possible implications. The solution is freely available.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Dumais, S.T.: Latent semantic analysis. Ann. Rev. Inf. Sci. Technol. 38(1), 188–230 (2004). https://doi.org/10.1002/aris.1440380105, https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/aris.1440380105
Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions (2009)
Jwa, H., Oh, D., Park, K., Kang, J.M., Lim, H.: exBAKE: automatic fake news detection model based on bidirectional encoder representations from transformers (BERT). Appl. Sci. 9(19), 4062 (2019)
Koloski, B., Pollak, S., Škrlj, B.: Multilingual detection of fake news spreaders via sparse matrix factorization. In: CLEF (2020)
Loper, E., Bird, S.: NLTK: the natural language toolkit. In: Proceedings of the ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing and Computational Linguistics - Volume 1, pp. 63–70. ETMTNLP 2002, Association for Computational Linguistics, USA (2002). https://doi.org/10.3115/1118108.1118117
Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., et al., (eds.) Advances in Neural Information Processing Systems 30, pp. 4765–4774. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
Martinc, M., Skrlj, B., Pollak, S.: Multilingual gender classification with multi-view deep learning: notebook for PAN at CLEF 2018. In: Cappellato, L., Ferro, N., Nie, J., Soulier, L. (eds.) Working Notes of CLEF 2018 - Conference and Labs of the Evaluation Forum, Avignon, France, 10–14 September 2018. CEUR Workshop Proceedings, vol. 2125. CEUR-WS.org (2018). http://ceur-ws.org/Vol-2125/paper_156.pdf
Ji, L., Wang, Y., Shi, B., Zhang, D., Wang, Z., Yan, J.: Microsoft concept graph: mining semantic concepts for short text understanding. Data Intell. 1, 262–294 (2019)
Patwa, P., et al.: Overview of constraint 2021 shared tasks: detecting English covid-19 fake news and Hindi hostile posts. In: Chakraborty, T., Shu, K., Bernard, R., Liu, H., Akhtar, M.S. (eds.) CONSTRAINT 2021, CCIS 1402, pp. 42–53. Springer, Cham (2021)
Patwa, P., et al.: Fighting an infodemic: Covid-19 fake news dataset. arXiv preprint arXiv:2011.03327 (2020)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Princeton University: About wordnet (2010)
Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using siamese BERT-networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, November 2019. https://arxiv.org/abs/1908.10084
Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. CoRR 1910.01108 (2019)
Shannon, P., et al.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003)
Shao, C., Ciampaglia, G.L., Varol, O., Yang, K.C., Flammini, A., Menczer, F.: The spread of low-credibility content by social bots. Nature Commun. 9(1), 1–9 (2018)
Shu, K., Bernard, H.R., Liu, H.: Studying fake news via network analysis: detection and mitigation. In: Agarwal, N., Dokoohaki, N., Tokdemir, S. (eds.) Emerging Research Challenges and Opportunities in Computational Social Network Analysis and Mining. LNSN, pp. 43–65. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-94105-9_3
Škrlj, B., Martinc, M., Kralj, J., Lavrač, N., Pollak, S.: tax2vec: constructing interpretable features from taxonomies for short text classification. Comput. Speech Lang. 65, 101104 (2020). https://doi.org/10.1016/j.csl.2020.101104, http://www.sciencedirect.com/science/article/pii/S0885230820300371
Acknowledgements
The work of the last author was funded by the Slovenian Research Agency (ARRS) through a young researcher grant. The work of other authors was supported by the Slovenian Research Agency core research programme Knowledge Technologies (P2-0103) and the ARRS funded research projects Semantic Data Mining for Linked Open Data (ERC Complementary Scheme, N2-0078) and Computer-assisted multilingual news discourse analysis with contextual embeddings - J6-2581). The work was also supported by European Union’s Horizon 2020 research and innovation programme under grant agreement No 825153, project EMBEDDIA (Cross-Lingual Embeddings for Less-Represented Languages in European News Media).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Koloski, B., Stepišnik-Perdih, T., Pollak, S., Škrlj, B. (2021). Identification of COVID-19 Related Fake News via Neural Stacking. In: Chakraborty, T., Shu, K., Bernard, H.R., Liu, H., Akhtar, M.S. (eds) Combating Online Hostile Posts in Regional Languages during Emergency Situation. CONSTRAINT 2021. Communications in Computer and Information Science, vol 1402. Springer, Cham. https://doi.org/10.1007/978-3-030-73696-5_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-73696-5_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-73695-8
Online ISBN: 978-3-030-73696-5
eBook Packages: Computer ScienceComputer Science (R0)