Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

avatar—Automated Feature Wrangling for Machine Learning

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XIX (IDA 2021)

Abstract

A large part of the time invested in data science is spent on manual preparation of data. Transforming wrongly formatted columns into useful features takes up a significant part of this time. We present the avatar algorithm for automatically learning programs that perform this type of feature wrangling. Instead of relying on users to guide the wrangling process, avatar directly uses the predictive performance of machine learning models to measure its progress during wrangling. We use datasets from Kaggle to show that avatar improves raw data for prediction, and square it off against human data scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.kaggle.com.

  2. 2.

    https://github.com/pidgeyusedgust/avatar-ida21.

References

  1. Bavishi, R., Lemieux, C., Fox, R., Sen, K., Stoica, I.: Autopandas: neural-backed generators for program synthesis. In: Proceedings of the ACM on Programming Languages 3(OOPSLA), pp. 1–27 (2019)

    Google Scholar 

  2. Dasu, T., Johnson, T.: Exploratory Data Mining and Data Cleaning, vol. 479. Wiley, New York (2003)

    Google Scholar 

  3. Drosos, I., Barik, T., Guo, P.J., DeLine, R., Gulwani, S.: Wrex: a unified programming-by-example interaction for synthesizing readable code for data scientists. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2020)

    Google Scholar 

  4. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter, F.: Auto-sklearn: efficient and robust automated machine learning. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp. 113–134. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5_6

    Chapter  Google Scholar 

  5. He, Y., Chu, X., Ganjam, K., Zheng, Y., Narasayya, V., Chaudhuri, S.: Transform-data-by-example (TDE) an extensible search engine for data transformations. Proc. VLDB Endow. 11(10), 1165–1177 (2018)

    Article  Google Scholar 

  6. Jin, Z., Anderson, M.R., Cafarella, M., Jagadish, H.: Foofah: transforming data by example. In: Proceedings of the 2017 ACM International Conference on Management of Data, pp. 683–698 (2017)

    Google Scholar 

  7. Kandel, S., Paepcke, A., Hellerstein, J., Heer, J.: Wrangler: interactive visual specification of data transformation scripts. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3363–3372 (2011)

    Google Scholar 

  8. Kanter, J.M., Veeramachaneni, K.: Deep feature synthesis: towards automating data science endeavors. In: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–10. IEEE (2015)

    Google Scholar 

  9. Kaul, A., Maheshwary, S., Pudi, V.: Autolearn–automated feature generation and selection. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 217–226. IEEE (2017)

    Google Scholar 

  10. Le, V., Gulwani, S.: Flashextract: a framework for data extraction by examples. In: Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 542–553 (2014)

    Google Scholar 

  11. Lundberg, S.M., et al.: From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2(1), 2522–5839 (2020)

    Article  Google Scholar 

  12. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, pp. 4765–4774 (2017)

    Google Scholar 

  13. Olson, R.S., Moore, J.H.: TPOt: a tree-based pipeline optimization tool for automating machine learning. In: Workshop on Automatic Machine Learning, pp. 66–74. PMLR (2016)

    Google Scholar 

  14. Raman, V., Hellerstein, J.M.: Potter’s wheel: an interactive data cleaning system. VLDB 1, 381–390 (2001)

    Google Scholar 

  15. Shapley, L.S.: A value for n-person games. Contrib. Theor. Games 2(28), 307–317 (1953)

    MathSciNet  MATH  Google Scholar 

  16. Van Wolputte, E., Korneva, E., Blockeel, H.: Mercs: multi-directional ensembles of regression and classification trees. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, pp. 4276–4283. AAAI Publications, New Orleans, Louisiana, USA (2018)

    Google Scholar 

  17. Yan, C., He, Y.: Auto-suggest: learning-to-recommend data preparation steps using data science notebooks. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 1539–1554 (2020)

    Google Scholar 

  18. Yang, C., Akimoto, Y., Kim, D.W., Udell, M.: Oboe: collaborative filtering for autoML model selection. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1173–1183 (2019)

    Google Scholar 

Download references

Acknowledgements

This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No [694980] SYNTH: Synthesising Inductive Data Models). This research received funding from the Flemish Government (AI Research Program). Sebastijan Dumancic is funded by the Research Foundation-Flanders (FWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gust Verbruggen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Verbruggen, G., Van Wolputte, E., Dumančić, S., De Raedt, L. (2021). avatar—Automated Feature Wrangling for Machine Learning. In: Abreu, P.H., Rodrigues, P.P., Fernández, A., Gama, J. (eds) Advances in Intelligent Data Analysis XIX. IDA 2021. Lecture Notes in Computer Science(), vol 12695. Springer, Cham. https://doi.org/10.1007/978-3-030-74251-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74251-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74250-8

  • Online ISBN: 978-3-030-74251-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics