Abstract
Since the last few decades, the prey-predator system delivers attractive mathematical models to analyse the dynamics of prey-predator interaction. Due to the lack of precise information about the natural parameters, a significant number of research works have been carried out to take care of the impreciseness of the natural parameters in the prey-predator models. Due to direct impact of the imprecise parameters on the variables, the variables also become imprecise. In this paper, we developed an imprecise prey-predator model considering both prey and predator population as imprecise variables. Also, we have assumed the parameters of the prey-predator system as imprecise. The imprecise prey-predator model is converted to an equivalent crisp model using “e” and “g” operator method. The condition for local stability for the deterministic system is obtained mathematically by analysing the eigenvalues of the characteristic equation. Furthermore, numerical simulations are presented in tabular and graphical form to validate the theoretical results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chakraborty, K., Das, S., Kar, T.K.: Optimal control of effort of a stage structured prey-predator fishery model with harvesting. Nonlinear Anal.: Real World Appl. 12(6), 3452–3467 (2011)
da Silva Peixoto, M., de Barros, L., Carlos, R.B.: Predator-prey fuzzy model. Ecol. Model. 214(1), 39–44 (2008)
De, A., Maity, K., Maiti, M.: Stability analysis of combined project of fish, broiler and ducks: dynamical system in imprecise environment. Int. J. Biomath. 8(05), 1550067 (2015)
De, A., Maity, K., Maiti, M.: Fish and broiler optimal harvesting models in imprecise environment. Int. J. Biomath. 10(08), 1750115 (2017)
Guo, M., Xue, X., Li, R.: Impulsive functional differential inclusions and fuzzy population models. Fuzzy Sets Syst. 138(3), 601–615 (2003)
Kar, T.K.: Modelling and analysis of a harvested prey-predator system incorporating a prey refuge. J. Comput. Appl. Math. 185(1), 19–33 (2006)
Khatua, D., Maity, K.: Stability of fuzzy dynamical systems based on quasi-level-wise system. J. Intell. Fuzzy Syst. 33(6), 3515–3528 (2017)
Lotka, A.J.: Elements of Physical Biology. Williams and Wilkins Company, London (1925)
Ma, M., Friedman, M., Kandel, A.: A new fuzzy arithmetic. Fuzzy Sets Syst. 108(1), 83–90 (1999)
Pal, D., Mahapatra, G.S., Samanta, G.P.: Stability and bionomic analysis of fuzzy parameter based prey-predator harvesting model using UFM. Nonlinear Dyn. 79(3), 1939–1955 (2015). https://doi.org/10.1007/s11071-014-1784-4
Pal, D., Mahapatra, G.S., Samanta, G.P.: Optimal harvesting of prey-predator system with interval biological parameters: a bioeconomic model. Math. Biosci. 241(2), 181–187 (2013)
Puri, M.L., Ralescu, D.: A differentials of fuzzy functions. J. Math. Anal. Appl. 91(2), 552–558 (1983)
Qu, Y., Wei, J.: Bifurcation analysis in a time-delay model for prey-predator growth with stage-structure. Nonlinear Dyn. 49(1–2), 285–294 (2007). https://doi.org/10.1007/s11071-006-9133-x
Seo, G., DeAngelis, D.L.: A predator-prey model with a holling type I functional response including a predator mutual interference. J. Nonlinear Sci. 21(6), 811–833 (2011). https://doi.org/10.1007/s00332-011-9101-6
Tapaswini, S., Chakraverty, S.: Numerical solution of fuzzy arbitrary order predator-prey equations. Appl. Appl. Math. 8(2), 647–672 (2013)
Volterra, P.: Lessons in the mathematical theory of the struggle for life. Seuil, Paris (1931)
Wang Y.: Stability analysis of predator-prey system with fuzzy impulsive control. J. Appl. Math. 2012 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 IFIP International Federation for Information Processing
About this paper
Cite this paper
De, A., Khatua, D., Maity, K., Panigrahi, G., Maiti, M. (2021). Stability Analysis of Imprecise Prey-Predator Model. In: Shi, Z., Chakraborty, M., Kar, S. (eds) Intelligence Science III. ICIS 2021. IFIP Advances in Information and Communication Technology, vol 623. Springer, Cham. https://doi.org/10.1007/978-3-030-74826-5_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-74826-5_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-74825-8
Online ISBN: 978-3-030-74826-5
eBook Packages: Computer ScienceComputer Science (R0)