Abstract
In the last several years, AI/ML technologies have become pervasive in academia and industry, finding its utility in newer and challenging applications.
Point of contact on behalf of the organizing committee.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arya, V., et al.: Ai explainability 360: an extensible toolkit for understanding data and machine learning models. J. Mach. Learn. Res. 21(130), 1–6 (2020). http://jmlr.org/papers/v21/19-1035.html
Bandyopadhyay, S., Lokesh, N., Murty, M.N.: Outlier aware network embedding for attributed networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 12–19 (2019)
Berti-Equille, L.: Learn2clean: optimizing the sequence of tasks for web data preparation. In: The World Wide Web Conference, pp. 2580–2586 (2019)
Biljecki, F., Heuvelink, G.B., Ledoux, H., Stoter, J.: The effect of acquisition error and level of detail on the accuracy of spatial analyses. Cartogr. Geogr. Inf. Sci. 45(2), 156–176 (2018)
Heidari, A., McGrath, J., Ilyas, I.F., Rekatsinas, T.: Holodetect: few-shot learning for error detection. In: Proceedings of the 2019 International Conference on Management of Data, pp. 829–846 (2019)
Heinrich, B., Hristova, D., Klier, M., Schiller, A., Szubartowicz, M.: Requirements for data quality metrics. J. Data Inf. Qual. (JDIQ) 9(2), 1–32 (2018)
Hirsch, D., et al.: Corporate data ethics: data governance transformations for the age of advanced analytics and AI (initial draft of final report). In: Presented at the Privacy Law Scholars Conference (2020)
Hou, Y., et al.: Measuring and improving the use of graph information in graph neural networks. In: International Conference on Learning Representations (2019)
Hynes, N., Sculley, D., Terry, M.: The data linter: lightweight, automated sanity checking for ml data sets. In: NIPS MLSys Workshop (2017)
Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. arXiv preprint arXiv:1908.09635 (2019)
Ratner, A., Bach, S.H., Ehrenberg, H., Fries, J., Wu, S., Ré, C.: Snorkel: rapid training data creation with weak supervision. VLDB J. 29(2), 709–730 (2020)
Raza, M., Gulwani, S.: Automated data extraction using predictive program synthesis. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)
Rekatsinas, T., Chu, X., Ilyas, I.F., Ré, C.: HoloClean: holistic data repairs with probabilistic inference. Proc. VLDB Endow. 10(11), 1190–1201 (2017)
Wu, R., Zhang, A., Ilyas, I.F., Rekatsinas, T.: Attention-based learning for missing data imputation in HoloClean. In: Proceedings of Machine Learning and Systems, pp. 307–325 (2020)
Yoon, J., Jordon, J., Schaar, M.: Gain: missing data imputation using generative adversarial nets. In: International Conference on Machine Learning, pp. 5689–5698 (2018)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Bandyopadhyay, B. et al. (2021). 1st International Workshop on Data Assessment and Readiness for AI. In: Gupta, M., Ramakrishnan, G. (eds) Trends and Applications in Knowledge Discovery and Data Mining. PAKDD 2021. Lecture Notes in Computer Science(), vol 12705. Springer, Cham. https://doi.org/10.1007/978-3-030-75015-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-75015-2_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-75014-5
Online ISBN: 978-3-030-75015-2
eBook Packages: Computer ScienceComputer Science (R0)