Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Towards Knowledge-Driven Automatic Service Composition for Wildfire Prediction

  • Conference paper
  • First Online:
Service-Oriented Computing – ICSOC 2020 Workshops (ICSOC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12632))

Included in the following conference series:

Abstract

Wildfire prediction from Earth Observation (EO) data has gained much attention in the past years, through the development of connected sensors and weather satellites. Nowadays, it is possible to extract knowledge from collected EO data and to learn from this knowledge without human intervention to trigger wildfire alerts. However, exploiting knowledge extracted from multiple EO data sources at run-time and predicting wildfire raise multiple challenges. One major challenge is to provide dynamic construction of service composition plans, according to the data obtained from sensors. In this paper, we present a knowledge-driven Machine Learning approach that relies on historical data related to wildfire observations to guide the collection of EO data and to automatically and dynamically compose services for triggering wildfire alerts.

This work was financially supported by the “PHC Utique” program of the French Ministry of Foreign Affairs and Ministry of higher education and research and the Tunisian Ministry of higher education and scientific research in the CMCU project number 17G1122. The authors acknowledge the European Commission for funding the InnoRenew CoE project (Grant Agreement #739574) under the Horizon2020 Widespread-Teaming program and the Republic of Slovenia (Investment funding of the Republic of Slovenia and the European Union of the European regional Development Fund).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://sites.google.com/view/predicat/predicat.

  2. 2.

    Service composition is the combination of a set of the smallest services forming a more complex service to meet users’ complex requirements.

  3. 3.

    Qualities of the data sources and services are out of the scope of this paper.

  4. 4.

    https://docs.google.com/spreadsheets/d/1v-46-KMHtErt3IGigFsusk7Fnp61DKvctMs9KMH_a-E/edit?usp=sharing.

  5. 5.

    https://research.csiro.au/amicus/.

  6. 6.

    Computing the most important feature and executing its service.

References

  1. Mitchell, T.: Machine Learning. Publisher McGraw-Hill, New York (1997). ISBN 0070428077ISBN 0070428077

    MATH  Google Scholar 

  2. Boustil, A., Maamri, R., Sahnoun, Z.: A semantic selection approach for composite web services using OWL-DL and rules. Serv. Oriented Comput. Appl. 8, 221–238 (2014)

    Article  Google Scholar 

  3. Rodriguez-M, P., Pedrinaci, C., Lama, M., Mucientes, M.: An integrated semantic web service discovery and composition framework. IEEE Trans. Serv. Comput. 9, 537–550 (2016)

    Article  Google Scholar 

  4. Masmoudi, M., et al.: PREDICAT: a semantic service-oriented platform for data interoperability and linking in earth observation and disaster prediction. In: Conference on Service-Oriented Computing Applications (SOCA), Paris, pp. 194–201 (2018)

    Google Scholar 

  5. Bartalos, P., Bielikova, M.: Automatic dynamic web service composition: a survey and problem formalization. Comput. Inf. 30(4), 793–827 (2011)

    Google Scholar 

  6. Taktak, H., Boukadi, K., Mrissa, M., Ghedira, C., Gargouri, F.: A model-driven approach for semantic data-as-a-service generation. In: IEEE International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises - WETICE, France (2020)

    Google Scholar 

  7. Robin Genuer, R., Poggi, J.M., Tuleau-Malot, C.: Variable selection using random forests. J. Pattern Recognit. Lett. 31, 2225–2236 (2010)

    Article  Google Scholar 

  8. Bansal, S., Bansal, A., Gupta, G., Blake, M.B.: Generalized semantic Web service composition. J. Serv. Oriented Comput. Appl. 10, 111–133 (2016)

    Article  Google Scholar 

  9. Giglio, L., Boschetti, L., Roy, D.P., Humber, M.L., Justice, C.O.: The collection 6MODIS burned area mapping algorithm and product. Remote Sens. Environ. 217, 72–85 (2018)

    Article  Google Scholar 

  10. Gupta, I.K., Kumar, J., Rai, P.: Optimization to quality-of-service-driven web service composition using modified genetic algorithm. In: International Conference on Computer, Communication and Control, pp. 1–6 (2015)

    Google Scholar 

  11. Ma, H., Wang, A., Zhang, M.: A hybrid approach using genetic programming and greedy search for QoS-aware web service composition. In: Hameurlain, A., Küng, J., Wagner, R., Decker, H., Lhotska, L., Link, S. (eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems XVIII. LNCS, vol. 8980, pp. 180–205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46485-4_7

    Chapter  Google Scholar 

  12. Sawczuk da Silva, A., Mei, Y., Ma, H., Zhang, M.: Particle swarm optimisation with sequence-like indirect representation for web service composition. In: Chicano, F., Hu, B., García-Sánchez, P. (eds.) EvoCOP 2016. LNCS, vol. 9595, pp. 202–218. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30698-8_14

    Chapter  Google Scholar 

  13. Yu, Y., Ma, H., Zhang, M.: An adaptive genetic programming approach to QoSaware web services composition. In: 2013 IEEE Congress on Evolutionary Computation, pp. 1740–1747 (2013)

    Google Scholar 

  14. Petrie, C.J.: Web Service Composition. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32833-1

    Book  Google Scholar 

  15. Murthy, S.K.: Automatic construction of decision trees from data: a multi-disciplinary survey. J. Data Min. Knowl. Disc. 2, 345–389 (1998)

    Article  Google Scholar 

  16. Breiman, L.: Random forests. J. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  17. Sharples, J.J., McRae, R.H.D., Weber, R.O., Gill, A.M.: A simple index for assessing fire danger rating. Environ. Model. Softw. 24, 764–774 (2009)

    Article  Google Scholar 

  18. Urbieta, A., González-B, A., Mokhtar, S., Hossain, M., Capra, L.: Adaptive and context-aware service composition for IoT-based smart cities. Future Gener. Comput. Syst. 76, 262–274 (2017)

    Article  Google Scholar 

  19. Deng, S., Xiang, Z., Yin, J., Taheri, J., Zomaya, A.Y.: Composition-driven IoT service provisioning in distributed edges. IEEE Access 6, 54258–54269 (2018)

    Article  Google Scholar 

  20. Asghari, P., Rahmani, A., Javadi, H.H.S.: Service composition approaches in IoT: a systematic review. J. Netw. Comput. Appl. 120, 61–77 (2018)

    Article  Google Scholar 

  21. Chen, G., Huang, J., Cheng, B., Chen, J.: A social network based approach for IoT device management and service composition. In: IEEE World Congress on Services, pp. 1–8 (2015)

    Google Scholar 

  22. Yang, R., Li, B., Cheng, C.: Adaptable service composition for intelligent logistics: a middleware approach. In: Conference on Cloud Computing and Big Data, pp. 75–82 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hela Taktak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Taktak, H., Boukadi, K., Guégan, C.G., Mrissa, M., Gargouri, F. (2021). Towards Knowledge-Driven Automatic Service Composition for Wildfire Prediction. In: Hacid, H., et al. Service-Oriented Computing – ICSOC 2020 Workshops. ICSOC 2020. Lecture Notes in Computer Science(), vol 12632. Springer, Cham. https://doi.org/10.1007/978-3-030-76352-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76352-7_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76351-0

  • Online ISBN: 978-3-030-76352-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics