Abstract
In the area of ophthalmology, diabetic retinopathy affects an increasing number of people. Early detection avoids severe diabetic proliferative retinopathy complications. In this paper, we propose a method for binary classification of retinal images using convolutional neural networks architecture. This method is formed to recognize and classify a retinal image as normal or abnormal retina. The paper setup is, first of all a preprocessing step is applied, next by data augmentation, and then a CNN formed, and applied. To train, validate and test the proposed model, we have used a public dataset “Resized version of the Diabetic Retinopathy Kaggle competition dataset” from Kaggle web site. Proposed model has trained using 4000 images of the normal retina and 4000 images of abnormal diabetic retina, and 500 images of the normal retina and 500 images of abnormal diabetic retina for testing. The accuracy Achieves 89% in 100 images of single prediction words.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Reference
Martinez-Conde, S., Macknik, S.L., Hubel, D.H.: The role of fixational eye movements in visual perception. Nat. Rev. Neurosci. 5(3), 229–240 (2004)
Behar-Cohen, F., Martinsons, C., Viénot, F., et al.: Light-emitting diodes (LED) for domestic lighting: any risks for the eye? Prog. Retinal Eye Res. 30(4), 239–257 (2011)
Ennant, M.T.S., Greve, M.D.J., Rudnisky, C.J., et al.: Identification of diabetic retinopathy by stereoscopic digital imaging via teleophthalmology: a comparison to slide film. Can. J. Ophthalmol. 36(4), 187–196 (2001)
Lisboa, P.J.G.: A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Netw. 15(1), 11–39 (2002)
Rynjolfsson, E., Mcafee, A.: The business of artificial intelligence. Harvard Bus. Rev. 1–20 (2017)
Charya, U.R., Oh, S.L., Hagiwara, Y., et al.: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. 100, 270–278 (2018)
Weimer, D., Scholz-Reiter, B., Shpitalni, M.: Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection. CIRP Ann. 65(1), 417–420 (2016)
Uhrig, R.E.: Introduction to artificial neural networks. In: Proceedings of IECON 1995 - 21st Annual Conference on IEEE Industrial Electronics, vol. 1, pp. 33–37. IEEE (1995)
Krogh, A.: What are artificial neural networks? Nat. Biotechnol. 26(2), 195–197 (2008)
Masood, A., Ali Al-Jumaily, A.: Computer aided diagnostic support system for skin cancer: a review of techniques and algorithms. Int. J. Biomed. Imaging 2013 (2013)
Freire, D.L., de Oliveira, R.F.A.P., Carmelo Filho, J.A.B., et al.: Machine learning applied in SARS-CoV-2 COVID 19 screening using clinical analysis parameters. IEEE Latin Am. Trans. 100(1) (2020)
Elmoufidi, A., El Fahssi, K., Jai-Andaloussi, S., et al.: Anomaly classification in digital mammography based on multiple-instance learning. IET Image Proc. 12(3), 320–328 (2017)
Elmoufidi, A.: Pre-processing algorithms on digital X-ray mammograms. In: 2019 IEEE International Smart Cities Conference (ISC2), pp. 87–92. IEEE (2019)
Bediang, G., Panpom, V.A., Koki, G., et al.: Utilisation d’un Logiciel d’Aide à la Décision pour le Dépistage de la Rétinopathie Diabétique au Cameroun. Health Sci. Dis. 21(3) (2020)
Alam, M., Le, D., Lim, J.I., et al.: Supervised machine learning based multi-task artificial intelligence classification of retinopathies. J. Clin. Med. 8(6), 872 (2019)
Ortiz-Feregrino, R., Tovar-Arriag, S., Ramos-Arreguin, J., et al.: Classification of proliferative diabetic retinopathy using deep learning. In: 2019 IEEE Colombian Conference on Applications in Computational Intelligence (ColCACI), pp. 1–6. IEEE (2019)
Gargeya, R., Leng, T.: Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124(7), 962–969 (2017)
Roychowdhury, S., Koozekanani, D.D., Parhi, K.K.: DREAM: diabetic retinopathy analysis using machine learning. IEEE J. Biomed. Health Inform. 18(5), 1717–1728 (2013)
Lee, R., Wong, T.Y., Sabanayagam, C.: Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis. 2(1), 1–25 (2015)
Oth, G., Dicke, U.: Evolution of the brain and intelligence. Trends Cogn. Sci. 9(5), 250–257 (2005)
Wang, S.-C.: Artificial neural network. In: Wang, S.-C. (ed.) Interdisciplinary Computing in Java Programming. The Springer International Series in Engineering and Computer Science, vol. 743, pp. 81–100. Springer, Boston (2003). https://doi.org/10.1007/978-1-4615-0377-4_5
Mola, A., Vishwanathan, S.V.N: Introduction to Machine Learning, vol. 32, no. 34. Cambridge University, Cambridge (2008)
Xiuqin, P., Zhang, Q., Zhang, H., et al.: A fundus retinal vessels segmentation scheme based on the improved deep learning U-Net model. IEEE Access. 7, 122634–122643 (2019)
Skouta, A., Elmoufidi, A., Jai-Andaloussi, S., et al.: Automated binary classification of diabetic retinopathy by convolutional neural networks. In: Saeed, F., Al-Hadhrami, T., Mohammed, F., Mohammed, E. (eds.) Advances on Smart and Soft Computing, Advances in Intelligent Systems and Computing, vol. 1188, pp. 177–187. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-6048-4_16
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
El Hossi, A., Skouta, A., Elmoufidi, A., Nachaoui, M. (2021). Applied CNN for Automatic Diabetic Retinopathy Assessment Using Fundus Images. In: Fakir, M., Baslam, M., El Ayachi, R. (eds) Business Intelligence. CBI 2021. Lecture Notes in Business Information Processing, vol 416. Springer, Cham. https://doi.org/10.1007/978-3-030-76508-8_31
Download citation
DOI: https://doi.org/10.1007/978-3-030-76508-8_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-76507-1
Online ISBN: 978-3-030-76508-8
eBook Packages: Computer ScienceComputer Science (R0)