Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Putting a Face on Algorithms: Personas for Modeling Artificial Intelligence

  • Conference paper
  • First Online:
Artificial Intelligence in HCI (HCII 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12797))

Included in the following conference series:

  • 3256 Accesses

Abstract

We propose a new type of personas, artificial intelligence (AI) personas, as a tool for designing systems consisting of both human and AI agents. Personas are commonly used in design practices for modelling users. We argue that the personification of AI agents can help multidisciplinary teams in understanding and designing systems that include AI agents. We propose a process for creating AI personas and the properties they should include, and report on our first experience using them. The case we selected for our exploration of AI personas was the design of a highly automated decision support tool for air traffic control. Our first results indicate that AI personas helped designers to empathise with algorithms and enabled better communication within a team of designers and AI and domain experts. We call for a research agenda on AI personas and discussions on potential benefits and pitfalls of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Klien, G., Woods, D.D., Bradshaw, J.M., Hoffman, R.R., Feltovich, P.J.: Ten challenges for making automation a “team player” in joint human-agent activity. IEEE Intell. Syst. 19, 91–95 (2004)

    Article  Google Scholar 

  2. Grudin, J.: From tool to partner: the evolution of human-computer interaction. In: Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems (CHI EA 2018), vol. Paper C15, pp. 1–3. Association for Computing Machinery (2018)

    Google Scholar 

  3. Endsley, M.R., Jones, D.G.: Designing for Situation Awareness: An Approach to User-Centered Design, Second Edition. CRC Press (2011)

    Google Scholar 

  4. Bond, R.M., et al.: A 61-million-person experiment in social influence and political mobilization. Nature 489, 295–298 (2012)

    Google Scholar 

  5. Shneiderman, B., Plaisant, C., Cohen, M., Jacobs, S., Elmqvist, N., Diakopoulos, N.: Grand challenges for HCI researchers. Interactions 23, 24–25 (2016)

    Article  Google Scholar 

  6. Farooq, U., Grudin, J.: Human-Computer Integration. Interactions 32, 26–32 (2016)

    Article  Google Scholar 

  7. Abdul, A., Vermeulen, J., Wang, D., Lim, B.Y., Kankanhalli, M.: Trends and trajectories for explainable, accountable and intelligible systems: an HCI research agenda. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, p. 582. Association for Computing Machinery, Montreal QC, Canada (2018)

    Google Scholar 

  8. Holmquist, L.E.: Intelligence on tap: artificial intelligence as a new design material. Interactions 24, 28–33 (2017)

    Google Scholar 

  9. Rose, J., Jones, M.: The double dance of agency: a socio-theoretic account of how machines and humans interact. Syst. Signs Actions Int. J. Commun. Inf. Technol. Work 1(2005), 19–37 (2005)

    Google Scholar 

  10. Giacomin, J.: What is human centred design? Des. J. 17, 606–623 (2014)

    Google Scholar 

  11. Yang, Q., Steinfeld, A., Rosé, C., Zimmerman, J.: Re-examining whether, why, and how human-AI interaction is uniquely difficult to design. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–13. Association for Computing Machinery (2020)

    Google Scholar 

  12. Gajendar, U.: Empathizing with the smart and invisible—algorithms! Interactions 23, 24–25 (2016)

    Google Scholar 

  13. Cooper, A.: The Inmates Are Running the Asylum: Why High Tech Products Drive Us Crazy and How to Restore the Sanity. Sams Publishing, Indianapolis (2004)

    Google Scholar 

  14. Bødker, S., Klokmose, C.N.: Preparing students for (inter)-action with activity theory. Int. J. Des. 6, 99–112 (2012)

    Google Scholar 

  15. Pruitt, J., Adlin, T.: The Persona Lifecycle. Morgan Kaufmann, San Francisco (2006)

    Google Scholar 

  16. Zhang, X., Brown, H-B., Shankar, A.: Data-driven Personas: constructing archetypal users with clickstreams and user telemetry. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 5350–5359. ACM, Santa Clara, California, USA (2016)

    Google Scholar 

  17. McGinn, J., Kotamraju, N.: Data-driven persona development. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ‘08), pp. 1521–1524 Association for Computing Machinery, (2008)

    Google Scholar 

  18. Blythe, M., Wright, P.C.: Pastiche scenarios: fiction as a resource for user centred design. Interact. Comput. 18, 1139–1164 (2006)

    Article  Google Scholar 

  19. Djajadiningrat, J.P., Gaver, W.W., Fres, J.W.: Interaction relabelling and extreme characters: methods for exploring aesthetic interactions. In: Proceedings of the 3rd Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques, pp. 66–71. ACM, New York City, New York, USA (2000)

    Google Scholar 

  20. Salminen, J., Jung, S-G., Jansen, B.J.: Detecting demographic bias in automatically generated personas. In: Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems (CHI EA 2019). pp. 1–6. Association for Computing Machinery, New York, NY, USA (2019)

    Google Scholar 

  21. Pröbster, M.M., Haque, M.E., Hermann, J.: Cognitive styles and personas: designing for users who are different from me. In: Proceedings of the 29th Australian Conference on Computer-Human Interaction (OZCHI 2017), pp. 452–456. Association for Computing Machinery, New York, NY, USA (2017)

    Google Scholar 

  22. Mardsen, N., Haag, M.: Stereotypes and politics: reflections on personas. In: CHI 2016, pp. 4017–4031. ACM (2016)

    Google Scholar 

  23. Turner, P., Turner, S.: Is stereotyping inevitable when designing personas. Des. Stud. 32, 30–44 (2011)

    Article  Google Scholar 

  24. Shevat, A.: Designing Bots: Creating Conversational Experiences. O’Reilly Media, Inc (2017)

    Google Scholar 

  25. Go, E., Sundar, S.S.: Humanizing chatbots: the effects of visual, identity and conversational cues on humanness perceptions. Comput. Hum. Behav. 97, 304–316 (2019)

    Article  Google Scholar 

  26. McIntyre, A.: Participatory Action Research SAGE Publications. Kindle Edition (2008)

    Google Scholar 

  27. Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots. Robot. Auton. Syst. 42, 143–166 (2003)

    Article  Google Scholar 

  28. Mone, G.: The edge of the uncanny. Commun. ACM 59, 17–19 (2016)

    Article  Google Scholar 

  29. Mennicken, S., Zihler, O., Juldaschewa, F., Molnar, V., Aggeler, D., Huang, E.M.: It’s like living with a friendly stranger”: perceptions of personality traits in a smart home. In: 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp ‘16), pp. 120–131. Association for Computing Machinery (2016)

    Google Scholar 

  30. Ahrndt, S., Aria, A., Fähndrich, J., Albayrak, S.: Ants in the OCEAN: modulating agents with personality for planning with humans. In: Bulling, N. (ed.) EUMAS 2014. LNCS (LNAI), vol. 8953, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17130-2_1

    Chapter  Google Scholar 

  31. Culley, K.E., Madhavan, P.: A note of caution regarding anthropomorphism in HCI agents. Comp. Hum. Behav. 29, 577–579 (2013)

    Article  Google Scholar 

  32. Isbister, K., Nass, C.: Consistency of personality in interactive characters. Int. J. Hum.-Comput. Stud. 53, 251–267 (2000)

    Article  Google Scholar 

  33. Woods, W., Dautenhahn, K., Kaouri, C., te Boekhorst, R., Koay, K.L., Walters, M.L.: Are robots like people?: Relationships between participant and robot personality traits in human–robot interaction studies. Interact. Stud. 8, 281–305 (2007)

    Article  Google Scholar 

  34. Lee, K.M., Peng, W., Jin, S.-A., Yan, C.: Can robots manifest personality?: An empirical test of personality recognition, social responses, and social presence in human-robot interaction. J. Commun. 56, 754–772 (2006)

    Article  Google Scholar 

  35. de Visser, E.J., et al.: Almost human: anthropomorphism increases trust resilience in cognitive agents. J. Exp. Psychol. Appl. 22(3), 331–349 (2016)

    Google Scholar 

  36. Cooper, A., Reimann, R., Cronin, D.: About Face 3: The Essentials of Interaction Design. Wiley Publiching Inc, Indianopolis (2007)

    Google Scholar 

  37. de Weerdt, M., Clement, B.: Introduction to planning in multiagent systems. Multiagent Grid Syst. 5, 345–355 (2009)

    Article  Google Scholar 

  38. Kjenstad, D., Mannino, C., Schittekat, P., Smedsrud, M.: Integrated surface and departure management at airports by optimization. In: Modeling, Simulation and Applied Optimization (ICMSAO), 2013 5th International Conference, Hammamet, 2013, pp. 1–5: IEEE Xplore Digital Library (2013)

    Google Scholar 

  39. Karahasanović, A., Nordlander, T.E., Schittekat, P.: Optimization-based training in ATM. In: Schmorrow, Dylan D., Fidopiastis, Cali M. (eds.) AC 2015. LNCS (LNAI), vol. 9183, pp. 757–766. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20816-9_72

    Chapter  Google Scholar 

  40. Nordlander, T., Karahasanovic, A., Schittekat, P.: Increasing trust in optimization based ATM systems through training. Lecture Notes Manag. Sci. 7, s 41–44 (2015). ISSN 2008-0050

    Google Scholar 

  41. Björndal, P., Rissanen, M.J., Murphy, S.: Lessons learned from using personas and scenarios for requirements specification of next-generation industrial robots. In: Marcus, A. (ed.) DUXU 2011. LNCS, vol. 6769, pp. 378–387. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21675-6_44

    Chapter  Google Scholar 

  42. Chang, Y., Lim, Y., Stolterman, E.: Personas: from theory to practices. In: Proceedings of the 5th Nordic conference on Human-computer interaction: building bridges (NordiCHI 2008). Association for Computing Machinery, Lund, Sweden (2008)

    Google Scholar 

Download references

Acknowledgements

The project was funded by the NextGenDST project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amela Karahasanović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karahasanović, A., Følstad, A., Schittekat, P. (2021). Putting a Face on Algorithms: Personas for Modeling Artificial Intelligence. In: Degen, H., Ntoa, S. (eds) Artificial Intelligence in HCI. HCII 2021. Lecture Notes in Computer Science(), vol 12797. Springer, Cham. https://doi.org/10.1007/978-3-030-77772-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77772-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77771-5

  • Online ISBN: 978-3-030-77772-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics