Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Designing Data Visualization Dashboards to Support the Prediction of Congenital Anomalies

  • Conference paper
  • First Online:
Human Interface and the Management of Information. Information Presentation and Visualization (HCII 2021)

Abstract

Computer based systems provides almost unlimited data storage, however, to be useful information needs to be processed and represented by suitable visualization solutions. A better visualization of information is necessary to browse and understand voluminous and complex data, such as health data. Therefore, new data visualization techniques must be investigated so that the vast amount of information makes sense for healthcare professionals, healthcare administrators and patients. More accurate and interpretative information through suitable visualization methods could, for example, contribute to mitigate problems related to congenital malformation. We investigate the design of information visualization solutions to propose new data visualization dashboards to support the prediction of congenital anomalies from patient health data. We used a national data source of Brazil. We present the design and preliminary evaluation results with experts from the health domain and related fields of research. Our proposal is intended to be useful for supporting patients, administrators and health professionals in the prediction activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6.

  2. 2.

    https://unicamp-arcgis.maps.arcgis.com/apps/opsdashboard/index.html#/3f735ecea81b419196870772a74da4a6.

  3. 3.

    http://datasus1.saude.gov.br/sistemas-e-aplicativos/eventos-v/sinasc-sistema-de-informacoes-de-nascidos-vivos.

  4. 4.

    The Apgar score is a method to quickly summarize the health of newborn children, the Apgar1 refers to health at the first minute and Apgar5 in the fifth minute.

  5. 5.

    https://www.tableau.com/.

  6. 6.

    Hyper is a high-volume data processing technology that offers fast analytics performance considering big data.

  7. 7.

    https://www.qgis.org/.

  8. 8.

    https://portaldemapas.ibge.gov.br/.

  9. 9.

    https://www.br.undp.org/content/brazil/pt/home/idh0/rankings/idhm-municipios-2010.html.

  10. 10.

    https://icd.who.int/browse10/2019/en.

  11. 11.

    1. Strongly disagree, 2. Disagree, 3. Neutral, 4. Agree, 5. Strongly agree.

References

  1. Ahern, D.K., Stinson, L.J., Uebelacker, L.A., Wroblewski, J.P., McMurray, J.H., Eaton, C.B.: E-health blood pressure control program. J. Med. Pract. Manage. 28(2), 91–100 (2012)

    Google Scholar 

  2. Andre, M., et al.: Transmission network analysis to complement routine tuberculosis contact investigations. Am. J. Publ. Health 97(3), 470–477 (2007). https://doi.org/10.2105/AJPH.2005.071936, 17018825[pmid]

  3. AvRuskin, G.A., Jacquez, G.M., Meliker, J.R., Slotnick, M.J., Kaufmann, A.M., Nriagu, J.O.: Visualization and exploratory analysis of epidemiologic data using a novel space time information system. Int. J. Health Geograph. 3(1), 26 (2004). https://doi.org/10.1186/1476-072X-3-26

    Article  Google Scholar 

  4. Buttigieg, S.C., Pace, A., Rathert, C.: Hospital performance dashboards: a literature review. J. Health Organ. Manag. 31(3), 385–406 (2017)

    Article  Google Scholar 

  5. Carroll, L.N., Au, A.P., Detwiler, L.T., Fu, T.C., Painter, I.S., Abernethy, N.F.: Visualization and analytics tools for infectious disease epidemiology: a systematic review. J. Biomed. Inform. 51, 287–298 (2014)

    Article  Google Scholar 

  6. Chen, M., et al.: Data, information, and knowledge in visualization. IEEE Comput. Graph. Appl. 29(1), 12–19 (2009). https://doi.org/10.1109/MCG.2009.6

    Article  Google Scholar 

  7. Choo, C.W.: The knowing organization: how organizations use information to construct meaning, create knowledge and make decisions. Int. J. Inform. Manag. 16(5), 329–340 (1996)

    Article  Google Scholar 

  8. Dowding, D., et al.: Dashboards for improving patient care: review of the literature. Int. J. Med. Inform. 84(2), 87–100 (2015). https://doi.org/10.1016/j.ijmedinf.2014.10.001

    Article  Google Scholar 

  9. Fontoura, F.C., Cardoso, M.V.L.M.L., Rodrigues, S.E., Almeida, P.C.D., Carvalho, L.B.: Ansiedade de mães de recém-nascidos com malformações congênitas nos períodos pré e pós-natal. Rev. Latino-Am. Enfermagem 26, e3080 (2019). https://doi.org/10.1590/1518-8345.2482.3080

  10. Freitas, C.M.D.S., Chubachi, O.M., Luzzardi, P.R.G., Cava, R.A.: Introdução à visualização de informações. Rev. Inform. Teórica aplicada. Porto Alegre. 8(2), 143–158 (2001)

    Google Scholar 

  11. Hay, S.I., et al.: Global mapping of infectious disease. Philosop. Trans. R. Soc. London. Ser. B Biol. Sci. 368(1614), 20120250–20120250 (2013). https://doi.org/10.1098/rstb.2012.0250, 23382431[pmid]

  12. Khairat, S.S., Dukkipati, A., Lauria, H.A., Bice, T., Travers, D., Carson, S.S.: The impact of visualization dashboards on quality of care and clinician satisfaction: integrative literature review. JMIR Hum. Factors 5(2), e22–e22 (2018). https://doi.org/10.2196/humanfactors.9328, 29853440[pmid]

  13. Khan, A.S., Fleischauer, A., Casani, J., Groseclose, S.L.: The next public health revolution: public health information fusion and social networks. Am. J. Publ. Health 100(7), 1237–1242 (2010). https://doi.org/10.2105/AJPH.2009.180489. 20530760[pmid]

  14. Lopez, D., Blobel, B.: Semantic interoperability between clinical and public health information systems for improving public health services. Stud. Health Technol. Inform. 127, 256–67 (2007)

    Google Scholar 

  15. McMenamin, J., Nicholson, R., Leech, K.: Patient Dashboard: the use of a colour-coded computerised clinical reminder in Whanganui regional general practices. J. Prim. Health Care 3(4), 307–310 (2011)

    Article  Google Scholar 

  16. Nediger, M.: How to choose the best types of charts for your data (2019). https://venngage.com/blog/how-to-choose-the-best-charts-for-your-infographic/

  17. Nielsen, J.: Usability Engineering. Morgan Kaufmann, Burlington (1994)

    Google Scholar 

  18. Nogueira, P., Martins, J., Rita, F., Fatela, L.: Dashboard da saúde: passado, presente e futuro. uma perspectiva da evolução em portugal. Int. J. Inform. Manag. 1(2), 1–12 (2017)

    Google Scholar 

  19. Ouellete, C.: Five best survey data visualization tools (2019). https://optinmonster.com/best-survey-data-visualization-tools/

  20. Pablate, J.: The effect of electronic feedback on anesthesia providers’ timely preoperative antibiotic adminstration. Ph.D. thesis, University of North Florida (2009)

    Google Scholar 

  21. WHO: Congenital anomalies (2016). https://www.who.int/news-room/fact-sheets/detail/congenital-anomalies

  22. Zaydfudim, V., et al.: Implementation of a real-time compliance dashboard to help reduce SICU ventilator-associated pneumonia with the ventilator bundle. Arch. Surg. 144(7), 656–662 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Bonacin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Almeida, T.A., Rosa, F.d.F., Bonacin, R. (2021). Designing Data Visualization Dashboards to Support the Prediction of Congenital Anomalies. In: Yamamoto, S., Mori, H. (eds) Human Interface and the Management of Information. Information Presentation and Visualization. HCII 2021. Lecture Notes in Computer Science(), vol 12765. Springer, Cham. https://doi.org/10.1007/978-3-030-78321-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78321-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78320-4

  • Online ISBN: 978-3-030-78321-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics