Abstract
Most state-of-the-art halftone image data hiding methods aim to preserve good visual quality when embedding messages, while ignoring the statistical security. This paper proposed a halftone steganographic scheme that improves the visual quality and the statistical security of the anti-steganalysis. First, a general distortion measurement for halftone images based on human visual system (HVS) model is proposed. Utilizing the Least-Mean-Square (LMS) method, halftone images can be converted to grayscale images and the objective image quality assessment is applied to evaluate the distortion caused by flipping pixels. Different distortion measurements can be derived from different image quality assessments. Then, to further measure the embedding distortions, we combine these distortion measurements to construct a reassigned distortion measurement based on the controversial pixels prior (CPP) rule. Finally, syndrome-trellis code (STC) is employed to minimize the number of flipping pixels. Experimental results have shown that the proposed steganographic scheme achieves strong statistical security with high capacity and visual quality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bas, P., Filler, T., Pevn, Y.T.: Break our steganographic system: the ins and outs of organizing boss. J. Am. Stat. Assoc. 6958(454), 59–70 (2011)
Bayers, B.: An optimum method for two-level rendition of continuous-tone pictures. In: Proceedings of IEEE International Communication Conference, vol. 1, pp. 2611–2615 (1973)
Chiew, K.L., Pieprzyk, J.: Binary image steganographic techniques classification based on multi-class steganalysis. In: Kwak, J., Deng, R.H., Won, Y., Wang, G. (eds.) ISPEC 2010. LNCS, vol. 6047, pp. 341–358. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12827-1_25
Feng, B., Lu, W., Sun, W.: Binary image steganalysis based on pixel mesh Markov transition matrix. J. Vis. Commun. Image Represent. 26(C), 284–295 (2015)
Feng, B., Lu, W., Sun, W.: Secure binary image steganography based on minimizing the distortion on the texture. IEEE Trans. Inf. Forensics Secur. 10(2), 243–255 (2015)
Filler, T., Judas, J., Fridrich, J.: Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Trans. Inf. Forensics Secur. 6(3), 920–935 (2011)
Floyd, R.W., Steinberg, L.: Adaptive algorithm for spatial greyscale. In: Proceedings of SID, pp. 75–77 (1976)
Fu, M.S., Au, O.C.: Halftone image data hiding with intensity selection and connection selection. Sig. Process. Image Commun. 16(10), 909–930 (2001)
Fu, M.S., Au, O.C.: Data hiding watermarking for halftone images. IEEE Trans. Image Process. 11(4), 477–484 (2002)
Guo, J.M.: Improved data hiding in halftone images with cooperating pair toggling human visual system. Int. J. Imaging Syst. Technol. 17(6), 328–332 (2007)
Guo, J.M., Liu, Y.F.: Halftone-image security improving using overall minimal-error searching. IEEE Trans. Image Process. 20(10), 2800–2812 (2011)
Guo, M., Zhang, H.: High capacity data hiding for halftone image authentication. In: Shi, Y.Q., Kim, H.-J., Pérez-González, F. (eds.) IWDW 2012. LNCS, vol. 7809, pp. 156–168. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40099-5_14
Jarvis, J.F., Judice, C.N., Ninke, W.H.: A survey of techniques for the display of continuous tone pictures on bilevel displays. Comput. Graph. Image Process. 5(1), 13–40 (1976)
Knuth, D.E.: Digital halftones by dot diffusion. ACM Trans. Graph. 6(4), 245–273 (1987)
Lien, B.K., Lan, Z.L.: Improved halftone data hiding scheme using Hilbert curve neighborhood toggling. In: International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 73–76. IEEE (2011)
Lien, B.K., Pei, W.D.: Reversible data hiding for ordered dithered halftone images. In: IEEE International Conference on Image Processing, pp. 4237–4240. IEEE (2009)
Lin, C., Lu, W., Huang, X., Liu, K., Sun, W., Lin, H.: Region duplication detection based on hybrid feature and evaluative clustering. Multimedia Tools Appl. 78, 20739–20763 (2019)
Lin, C., et al.: Copy-move forgery detection using combined features and transitive matching. Multimedia Tools Appl. 78, 30081–30096 (2018)
Liu, A., Lin, W., Narwaria, M.: Image quality assessment based on gradient similarity. IEEE Trans. Image Process. 21(4), 1500–1512 (2012)
Liu, X., Lu, W., Liu, W., Luo, S., Liang, Y., Li, M.: Image deblocking detection based on a convolutional neural network. IEEE Access 7, 26432–26439 (2019)
Liu, X., Lu, W., Zhang, Q., Huang, J., Shi, Y.Q.: Downscaling factor estimation on pre-JPEG compressed images. IEEE Trans. Circ. Syst. Video Technol. 30(3), 618–631 (2020)
Lu, W., He, L., Yeung, Y., Xue, Y., Liu, H., Feng, B.: Secure binary image steganography based on fused distortion measurement. IEEE Trans. Circ. Syst. Video Technol. 29(6), 1608–1618 (2019)
Mannos, J., Sakrison, D.: The effects of a visual fidelity criterion of the encoding of images. IEEE Trans. Inf. Theory 20(4), 525–536 (1974)
Mese, M., Vaidyanathan, P.P.: Optimized halftoning using dot diffusion and methods for inverse halftoning. IEEE Trans. Image Process. 9(4), 691–709 (2000)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Xue, Y., Liu, W., Lu, W., Yeung, Y., Liu, X., Liu, H.: Efficient halftone image steganography based on dispersion degree optimization. J. Real-Time Image Process. 16, 601–609 (2019)
Yeung, Y., Lu, W., Xue, Y., Huang, J., Shi, Y.Q.: Secure binary image steganography with distortion measurement based on prediction. IEEE Trans. Circ. Syst. Video Technol. 30(5), 1423–1434 (2020)
Zhou, W., Zhang, W., Yu, N.: A new rule for cost reassignment in adaptive steganography. IEEE Trans. Inf. Forensics Secur. 12(11), 2654–2667 (2017)
Acknowledgements
This work is supported by the Key Areas R&D Program of Guangdong (No. 2019B010136002), the National Natural Science Foundation of China (No. U2001202, No. 62072480, No. U1736118), the National Key R&D Program of China (No. 2019QY2202, No. 2019QY(Y)0207), the Key Scientific Research Program of Guangzhou (No. 201804020068).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Xu, W., Liu, W., Lin, C., Wang, K., Wang, W., Lu, W. (2021). Halftone Image Steganography Based on Reassigned Distortion Measurement. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2021. Lecture Notes in Computer Science(), vol 12737. Springer, Cham. https://doi.org/10.1007/978-3-030-78612-0_30
Download citation
DOI: https://doi.org/10.1007/978-3-030-78612-0_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-78611-3
Online ISBN: 978-3-030-78612-0
eBook Packages: Computer ScienceComputer Science (R0)