Abstract
The detection of gestures and their interpretation is crucial for blind and visually impaired people (BVIP). In a card-based brainstorming meeting, sighted users use non-verbal communication when referring to cards on a common workspace using pointing, grouping, or pairing gestures. While sighted users could easily interpret such gestures, they remain inaccessible to BVIP. Thus, there is a need for capturing, interpreting and translating gestures for BVIP.
To address this problem, we developed a pointing gesture detection system using Unity with the SteamVR Plugin and HTC Vive. HTC’s trackers are attached to a user’s hands to measure the hand position in 3D space. With pointing gestures, a user controls a virtual ray that will intersect with a virtual whiteboard. This virtual whiteboard is invisible to the sighted users, but its position and size corresponds to a physical whiteboard. The intersection of the ray with the virtual whiteboard is calculated, resulting in a pointing trajectory on it. The shape of the trajectory is analyzed to determine, which artifacts are selected by the pointing gesture. A pointing gesture is detected when a user is pointing at a card on the screen and then ending the gesture by pointing outside of the screen. A pairing gesture is detected when pointing at one artifact and then on another one before leaving the screen. The grouping gesture is detected when performing an encircling gesture around multiple artifacts before leaving the screen.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alavi, A., Kunz, A.: Tracking deictic gestures over large interactive surfaces. Comput. Support. Coop. Work (CSCW) 24(2), 109–119 (2015). https://doi.org/10.1007/s10606-015-9219-4
Dhingra, N., Valli, E., Kunz, A.: Recognition and localisation of pointing gestures using a RGB-D camera. In: Stephanidis, C., Antona, M. (eds.) HCII 2020. CCIS, vol. 1224, pp. 205–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50726-8_27
Kane, S.K., Wobbrock, J.O., Ladner, R.E.: Usable gestures for blind people: understanding preference and performance. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 413–422. ACM, New York (2011). https://doi.org/10.1145/1978942.1979001
Koutny, R., Günther, S., Dhingra, N., Kunz, A., Miesenberger, K., Mühlhäuser, M.: Accessible multimodal tool support for brainstorming meetings. In: Miesenberger, K., Manduchi, R., Covarrubias Rodriguez, M., Peňáz, P. (eds.) ICCHP 2020. LNCS, vol. 12377, pp. 11–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58805-2_2
Kunz, A., Alavi, A., Sinn, P.: Integrating pointing gesture detection for enhancing brainstorming meetings using kinect and pixelsense. In: 8th International Conference on Digital Enterprise Technology, pp. 205–212 (2014). https://doi.org/10.1016/j.procir.2014.10.031, http://www.det-2014.de/en/home.html
Kunz, A., Schnelle-Walka, D., Alavi, A., Poelzer, S., Muehlhaeuser, M., Miesenberger, K.: Making tabletop interaction accessible for blind users. In: Interactive Tabletops and Surfaces, pp. 327–332. ACM, New York (2014). https://doi.org/10.1145/2669485.2669541, http://its2014.org/
Le, H.-A., Mac, K.-N.C., Pham, T.-A., Tran, M.-T.: Realtime pointing gesture recognition and applications in multi-user interaction. In: Selamat, A., Nguyen, N.T., Haron, H. (eds.) ACIIDS 2013. LNCS (LNAI), vol. 7802, pp. 355–364. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36546-1_37
Mehrabian, A., Ferris, S.R.: Inference of attitudes from nonverbal communication in two channels. J. Consult. Psychol. 31(3), 248–252 (1967). https://doi.org/10.1037/h0024648
Park, C., Roh, M., Lee, S.: Real-time 3D pointing gesture recognition in mobile space. In: 2008 8th IEEE International Conference on Automatic Face Gesture Recognition, pp. 1–6. IEEE, New York (2008). https://doi.org/10.1109/AFGR.2008.4813448
Pölzer, S., Schnelle-Walka, D., Pöll, D., Heumader, P., Miesenberger, K.: Making brainstorming meetings accessible for blind users. In: AAATE Conference (2013)
Miesenberger, K., Fels, D., Archambault, D., Peňáz, P., Zagler, W. (eds.): ICCHP 2014. LNCS, vol. 8547. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08596-8
Wang, J., Liu, T., Wang, X.: Human hand gesture recognition with convolutional neural networks for K-12 double-teachers instruction mode classroom. Infrared Phys. Technol. 111, 103464 (2020). https://doi.org/10.1016/j.infrared.2020.103464
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Liechti, S., Dhingra, N., Kunz, A. (2021). Detection and Localisation of Pointing, Pairing and Grouping Gestures for Brainstorming Meeting Applications. In: Stephanidis, C., Antona, M., Ntoa, S. (eds) HCI International 2021 - Posters. HCII 2021. Communications in Computer and Information Science, vol 1420. Springer, Cham. https://doi.org/10.1007/978-3-030-78642-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-78642-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-78641-0
Online ISBN: 978-3-030-78642-7
eBook Packages: Computer ScienceComputer Science (R0)