Abstract
As a new bio-inspired algorithm, the Physarum-based algorithm has shown great performance for solving complex computational problems. More and more researchers try to use the algorithm to solve some network optimization problems. Although the Physarum-based algorithm can figure out these problems correctly and accurately, the convergence speed of Physarum-based algorithm is relatively slow. This is mainly because many linear equations have to be solved when applying Physarum-based algorithm. Furthermore, many iterations are required using Physarum-based algorithm for network optimization problems with large number of nodes. With those observations in mind, two new methods are proposed to deal with these problems. By observing the traffic network data, there are many redundant nodes, which don’t need to be computed in practical applications. The calculation time of the algorithm is reduced by avoiding these special nodes. The convergence speed of Physarum-based algorithm can then be accelerated. Two real traffic networks and eighteen random sparse connected graphs are used to verify the performance of the proposed algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Transportation networks. https://github.com/bstabler/TransportationNetworks
Adamatzky, A.: If bz medium did spanning trees these would be the same trees as physarum built. Phys. Lett. A 373(10), 952–956 (2009)
Adamatzky, A., Jones, J.: Towards physarum robots: computing and manipulating on water surface. J. Bionic Eng. 5(4), 348–357 (2008)
Gunji, Y.P., Shirakawa, T., Niizato, T., Haruna, T.: Minimal model of a cell connecting amoebic motion and adaptive transport networks. J. Theor. Biol. 253(4), 659–667 (2008)
Gunji, Y.P., Shirakawa, T., Niizato, T., Yamachiyo, M., Tani, I.: An adaptive and robust biological network based on the vacant-particle transportation model. J. Theor. Biol. 272(1), 187–200 (2011)
Jones, J.: Characteristics of pattern formation and evolution in approximations of physarum transport networks. Artif. Life 16(2), 127–153 (2010)
Jones, J.: A morphological adaptation approach to path planning inspired by slime mould. Int. J. Gen Syst 44(3), 279–291 (2015)
Jones, J.: Applications of multi-agent slime mould computing. Int. J. Parallel Emergent Distrib. Syst. 31(5), 420–449 (2016)
Jones, J., Adamatzky, A.: Computation of the travelling salesman problem by a shrinking blob. Nat. Comput. 13(1), 1–16 (2013). https://doi.org/10.1007/s11047-013-9401-x
Kershaw, D.S.: The incomplete cholesky–conjugate gradient method for the iterative solution of systems of linear equations. J. Comput. Phys. 26(1), 43–65 (1978)
Liang, M., Gao, C., Liu, Y., Tao, L., Zhang, Z.: A new physarum network based genetic algorithm for bandwidth-delay constrained least-cost multicast routing. In: Tan, Y., Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds.) ICSI 2015. LNCS, vol. 9141, pp. 273–280. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20472-7_29
Liu, Y., et al.: Solving np-hard problems with physarum-based ant colony system. IEEE/ACM Trans. Comput. Biol. Bioinf. 14(1), 108–120 (2015)
Ma, Q., Johansson, A., Tero, A., Nakagaki, T., Sumpter, D.J.: Current-reinforced random walks for constructing transport networks. J. R. Soc. Interface 10(80), 20120864 (2013)
Masi, L., Vasile, M.: A multi-directional modified physarum algorithm for optimal multi-objective discrete decision making. In: Schuetze O. et al. (eds) EVOLVE-A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation III, pp. 195–212. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-319-01460-9_9
Pershin, Y.V., Di Ventra, M.: Solving mazes with memristors: a massively parallel approach. Phys. Rev. E 84(4), 046703 (2011)
Qian, T., Zhang, Z., Gao, C., Wu, Y., Liu, Y.: An ant colony system based on the physarum network. In: Tan, Y., Shi, Y., Mo, H. (eds.) ICSI 2013. LNCS, vol. 7928, pp. 297–305. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38703-6_35
Tero, A., Kobayashi, R., Nakagaki, T.: Physarum solver: a biologically inspired method of road-network navigation. Phys. A 363(1), 115–119 (2006)
Tero, A., et al.: Rules for biologically inspired adaptive network design. Science 327(5964), 439–442 (2010)
Tero, A., Yumiki, K., Kobayashi, R., Saigusa, T., Nakagaki, T.: Flow-network adaptation in physarum amoebae. Theory Biosci. 127(2), 89–94 (2008)
Toth, A., Nakagaki, T.: Intelligence: maze-solving by an amoeboid organism. Nature 407(28), 470 (2000)
Tsompanas, M.A.I., Sirakoulis, G.C.: Modeling and hardware implementation of an amoeba-like cellular automaton. Bioinspiration Biomim. 7(3), 036013 (2012)
Tsuda, S., Aono, M., Gunji, Y.P.: Robust and emergent physarum logical-computing. Biosystems 73(1), 45–55 (2004)
Wang, H., Lu, X., Zhang, X., Wang, Q., Deng, Y.: A bio-inspired method for the constrained shortest path problem. Sci. World J. 2014, 1–12 (2014)
Zhang, X., Huang, S., Hu, Y., Zhang, Y., Mahadevan, S., Deng, Y.: Solving 0–1 knapsack problems based on amoeboid organism algorithm. Appl. Math. Comput. 219(19), 9959–9970 (2013)
Zhang, X., Wang, Q., Adamatzky, A., Chan, F.T., Mahadevan, S., Deng, Y.: A biologically inspired optimization algorithm for solving fuzzy shortest path problems with mixed fuzzy arc lengths. J. Optim. Theory Appl. 163(3), 1049–1056 (2014)
Zhang, X., Wang, Q., Chan, F.T., Mahadevan, S., Deng, Y.: A physarum polycephalum optimization algorithm for the bi-objective shortest path problem. Int. J. Unconv. Comput. 10, 143–162 (2014)
Zhang, X., Zhang, Y., Hu, Y., Deng, Y., Mahadevan, S.: An adaptive amoeba algorithm for constrained shortest paths. Expert Syst. Appl. 40(18), 7607–7616 (2013)
Zhang, Y., Zhang, Z., Wei, D., Deng, Y.: Centrality measure in weighted networks based on an amoeboid algorithm. J. Inf. Comput. Sci. 9(2), 369–376 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, D., Zhang, Z. (2021). A Novel Physarum-Based Optimization Algorithm for Shortest Path. In: Tan, Y., Shi, Y. (eds) Advances in Swarm Intelligence. ICSI 2021. Lecture Notes in Computer Science(), vol 12689. Springer, Cham. https://doi.org/10.1007/978-3-030-78743-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-78743-1_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-78742-4
Online ISBN: 978-3-030-78743-1
eBook Packages: Computer ScienceComputer Science (R0)