Abstract
Since 2012, in a case-study in Bucaramanga-Colombia, 179 pedestrians died in car accidents, and another 2873 pedestrians were injured. Each day, at least one passerby is involved in a tragedy. Knowing the causes to decrease accidents is crucial, and using system-dynamics to reproduce the collisions’ events is critical to prevent further accidents. This work implements simulations to save lives by reducing the city’s accidental rate and suggesting new safety policies to implement. Simulation’s inputs are video recordings in some areas of the city. Deep Learning analysis of the images results in the segmentation of the different objects in the scene, and an interaction model identifies the primary reasons which prevail in the pedestrians or vehicles’ behaviours. The first and most efficient safety policy to implement - validated by our simulations - would be to build speed bumps in specific places before the crossings reducing the accident rate by 80%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aarón, M.A., Gómez, C.A., Fontalvo, J., Gómez, A.J.: Análisis de la Movilidad Vehicular en el Departamento de La Guajira usando Simulación. El Caso de Riohacha y Maicao. Información tecnológica 30(1), 321–332 (2019). https://doi.org/10.4067/s0718-07642019000100321
Álvarez-Pomar, L.: Modelo de inteligencia colectiva de los sistemas peatonales. Universidad Distrital Francisco Jose de Caldas 23(45), 5–24 (2016)
Camara, F., et al.: Predicting pedestrian road-crossing assertiveness for autonomous vehicle control. In: IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC November 2018, pp. 2098–2103 (2018). https://doi.org/10.1109/ITSC.2018.8569282
Campisi, T., Tesoriere, G., Canale, A.: The pedestrian micro-simulation applied to the river Neretva: the case study of the Mostar “old bridge”. In: AIP Conference Proceedings, vol. 2040, November 2018. https://doi.org/10.1063/1.5079193
Cantillo, V., Arellana, J., Rolong, M.: Modelling pedestrian crossing behaviour in urban roads: a latent variable approach. Transp. Res. Part F Traffic Psychol. Behav. 32, 56–67 (2015). https://doi.org/10.1016/j.trf.2015.04.008. https://linkinghub.elsevier.com/retrieve/pii/S1369847815000716
Chai, C., Shi, X., Wong, Y.D., Er, M.J., Gwee, E.T.M.: Fuzzy logic-based observation and evaluation of pedestrians’ behavioral patterns by age and gender. Transp. Res. Part F Traffic Psychol. Behav. 40, 104–118 (2016)
Cookson, R., Richards, D., Cuerden, R.: The characteristics of pedestrian road traffic accidents and the resulting injuries (2011)
Das, S., Manski, C.F., Manuszak, M.D.: Walk or wait? An empirical analysis of street crossing decisions. J. Appl. Econometrics 20(4), 529–548 (2005). https://doi.org/10.1002/jae.791
Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995). https://doi.org/10.1103/PhysRevE.51.4282
Holland, C., Hill, R.: Gender differences in factors predicting unsafe crossing decisions in adult pedestrians across the lifespan: a simulation study. Accid. Anal. Prev. 42(4), 1097–1106 (2010)
Koopmans, J.M., Friedman, L., Kwon, S., Sheehan, K.: Urban crash-related child pedestrian injury incidence and characteristics associated with injury severity. Accid. Anal. Prev. 77, 127–136 (2015). https://doi.org/10.1016/j.aap.2015.02.005
Kouabenan, D.R., Guyot, J.M.: Study of the causes of pedestrian accidents by severity. J. Psychol. Afr. 14(2) (2005). https://doi.org/10.4314/jpa.v14i2.30620
Kumar, N., Umadevi, G.: Application of System Dynamic Simulation Modeling in Road Safety. Trasnportation Research Board (2011)
Le Mouël, F., Hernández, C.B., Carrillo, O., Pedraza, G.: Decentralized, robust and efficient services for an autonomous and real-time urban crisis management (2017). https://arxiv.org/abs/1703.04519
Lèbre, M.A., Le Mouël, F., Ménard, E.: On the importance of real data for microscopic urban vehicular mobility trace. In: Proceedings of the 14th International Conference on ITS Telecommunications (ITST 2015), Copenhagen, Denmark, pp. 22–26, December 2015. https://doi.org/10.1109/ITST.2015.7377394
Lèbre, M.A., Le Mouël, F., Ménard, E.: Partial and local knowledge for global efficiency of urban vehicular traffic. In: Proceedings of the IEEE 82nd Vehicular Technology Conference (VTC 2015-Fall), Boston, MA, USA, pp. 1–5, September 2015. https://doi.org/10.1109/VTCFall.2015.7391065
Lin, T., Rivano, H., Le Mouël, F.: A survey of smart parking solutions. IEEE Trans. Intell. Transp. Syst. 18(12), 3229–3253 (2017). https://doi.org/10.1109/TITS.2017.2685143
Méndez-Giraldo, G., Álvarez-Pomar, L.: Dynamic model to analyze pedestrian traffic policies in Bogota. Dyna 81(186), 276 (2014). https://doi.org/10.15446/dyna.v81n186.45219
Oskarbski, J., Gumińska, L.: The application of microscopic models in the study of pedestrian traffic. In: MATEC Web of Conferences, vol. 231, pp. 1–7 (2018). https://doi.org/10.1051/matecconf/201823103003
Pau, G., Campisi, T., Canale, A., Severino, A., Collotta, M., Tesoriere, G.: Smart pedestrian crossing management at traffic light junctions through a fuzzy-based approach. Future Internet 10(2) (2018). https://doi.org/10.3390/fi10020015
Puentes, M., Arroyo, I., Carrillo, O., Barrios, C.J., Le Mouël, F.: Towards smart-city implementation for crisis management in fast-growing and unplanned cities: the colombian scenario. Ingeniería y Ciencia 16(32), 151–169 (2020). https://doi.org/10.17230/ingciencia.16.32.7
Puentes, M., Novoa, D., Nivia, J.D., Hernndez, C.B., Carrillo, O., Le Mouël, F.: Pedestrian behaviour modeling and simulation from real time data information. In: 2nd Workshop CATAI - SmartData for Citizen Wellness, Bogotá, Colombia, October 2019. http://www.catai.fr/catai2019/
Qian, S., Cao, J., Le Mouël, F., Sahel, I., Li, M.: SCRAM: a sharing considered route assignment mechanism for fair taxi route recommendations. In: Proceedings of the 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2015), Sydney, Australia, pp. 955–964, August 2015. https://doi.org/10.1145/2783258.2783261
Rasouli, A., Kotseruba, I., Tsotsos, J.K.: Understanding pedestrian behavior in complex traffic scenes. IEEE Trans. Intell. Veh. 3(1), 61–70 (2018). https://doi.org/10.1109/tiv.2017.2788193. http://ieeexplore.ieee.org/document/8241847/
Teknomo, K., Takeyama, Y., Inamura, H.: Review on microscopic pedestrian simulation model (March), 1–2 (2016). http://arxiv.org/abs/1609.01808
Torres, G., al.: La ciudad - región sostenible como proyecto: desafíos actuales. Visiones cruzadas y perspectivas. Universidad Nacional de Colombia, Sede Bogotá, Bogotá, October 2019. http://bdigital.unal.edu.co/74466/
Ulfarsson, G.F., Kim, S., Booth, K.M.: Analyzing fault in pedestrian-motor vehicle crashes in North Carolina. Accid. Anal. Prev. 42(6), 1805–1813 (2010)
Yang, J., Deng, W., Wang, J., Li, Q., Wang, Z.: Modeling pedestrians’ road crossing behavior in traffic system micro-simulation in China. Transp. Res. Part A Policy Pract. 40(3), 280–290 (2006). https://doi.org/10.1016/j.tra.2005.08.001
Zhang, G., Yau, K.K., Zhang, X.: Analyzing fault and severity in pedestrian-motor vehicle accidents in China. Accid. Anal. Prev. 73, 141–150 (2014)
Acknowledgements
This work is supported by the Government and the Unidades Tecnologicas de Santander (project 879/2017). Thanks to the SC3-UIS Lab, the Colifri association, the CITI Lab at INSA Lyon and the CATAI workgroup - where this project was already discussed and received feedbacks.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Puentes, M., Novoa, D., Nivia, J.M.D., Hernández, C.J.B., Carrillo, O., Mouël, F.L. (2022). Datacentric Analysis to Reduce Pedestrians Accidents: A Case Study in Colombia. In: Corchado, J.M., Trabelsi, S. (eds) Sustainable Smart Cities and Territories. SSCTIC 2021. Lecture Notes in Networks and Systems, vol 253. Springer, Cham. https://doi.org/10.1007/978-3-030-78901-5_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-78901-5_15
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-78900-8
Online ISBN: 978-3-030-78901-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)