Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Datacentric Analysis to Reduce Pedestrians Accidents: A Case Study in Colombia

  • Conference paper
Sustainable Smart Cities and Territories (SSCTIC 2021)

Abstract

Since 2012, in a case-study in Bucaramanga-Colombia, 179 pedestrians died in car accidents, and another 2873 pedestrians were injured. Each day, at least one passerby is involved in a tragedy. Knowing the causes to decrease accidents is crucial, and using system-dynamics to reproduce the collisions’ events is critical to prevent further accidents. This work implements simulations to save lives by reducing the city’s accidental rate and suggesting new safety policies to implement. Simulation’s inputs are video recordings in some areas of the city. Deep Learning analysis of the images results in the segmentation of the different objects in the scene, and an interaction model identifies the primary reasons which prevail in the pedestrians or vehicles’ behaviours. The first and most efficient safety policy to implement - validated by our simulations - would be to build speed bumps in specific places before the crossings reducing the accident rate by 80%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.datos.gov.co/Transporte/Accidentes-de-Transito-en-Bucaramanga-ocurridos-de/7cci-nqqb.

  2. 2.

    http://vision-traffic.ptvgroup.com/es/productos/ptv-vissim/.

  3. 3.

    https://www.briefcam.com/.

  4. 4.

    https://www.ptvgroup.com.

References

  1. Aarón, M.A., Gómez, C.A., Fontalvo, J., Gómez, A.J.: Análisis de la Movilidad Vehicular en el Departamento de La Guajira usando Simulación. El Caso de Riohacha y Maicao. Información tecnológica 30(1), 321–332 (2019). https://doi.org/10.4067/s0718-07642019000100321

  2. Álvarez-Pomar, L.: Modelo de inteligencia colectiva de los sistemas peatonales. Universidad Distrital Francisco Jose de Caldas 23(45), 5–24 (2016)

    Google Scholar 

  3. Camara, F., et al.: Predicting pedestrian road-crossing assertiveness for autonomous vehicle control. In: IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC November 2018, pp. 2098–2103 (2018). https://doi.org/10.1109/ITSC.2018.8569282

  4. Campisi, T., Tesoriere, G., Canale, A.: The pedestrian micro-simulation applied to the river Neretva: the case study of the Mostar “old bridge”. In: AIP Conference Proceedings, vol. 2040, November 2018. https://doi.org/10.1063/1.5079193

  5. Cantillo, V., Arellana, J., Rolong, M.: Modelling pedestrian crossing behaviour in urban roads: a latent variable approach. Transp. Res. Part F Traffic Psychol. Behav. 32, 56–67 (2015). https://doi.org/10.1016/j.trf.2015.04.008. https://linkinghub.elsevier.com/retrieve/pii/S1369847815000716

  6. Chai, C., Shi, X., Wong, Y.D., Er, M.J., Gwee, E.T.M.: Fuzzy logic-based observation and evaluation of pedestrians’ behavioral patterns by age and gender. Transp. Res. Part F Traffic Psychol. Behav. 40, 104–118 (2016)

    Article  Google Scholar 

  7. Cookson, R., Richards, D., Cuerden, R.: The characteristics of pedestrian road traffic accidents and the resulting injuries (2011)

    Google Scholar 

  8. Das, S., Manski, C.F., Manuszak, M.D.: Walk or wait? An empirical analysis of street crossing decisions. J. Appl. Econometrics 20(4), 529–548 (2005). https://doi.org/10.1002/jae.791

    Article  MathSciNet  Google Scholar 

  9. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995). https://doi.org/10.1103/PhysRevE.51.4282

    Article  Google Scholar 

  10. Holland, C., Hill, R.: Gender differences in factors predicting unsafe crossing decisions in adult pedestrians across the lifespan: a simulation study. Accid. Anal. Prev. 42(4), 1097–1106 (2010)

    Article  Google Scholar 

  11. Koopmans, J.M., Friedman, L., Kwon, S., Sheehan, K.: Urban crash-related child pedestrian injury incidence and characteristics associated with injury severity. Accid. Anal. Prev. 77, 127–136 (2015). https://doi.org/10.1016/j.aap.2015.02.005

    Article  Google Scholar 

  12. Kouabenan, D.R., Guyot, J.M.: Study of the causes of pedestrian accidents by severity. J. Psychol. Afr. 14(2) (2005). https://doi.org/10.4314/jpa.v14i2.30620

  13. Kumar, N., Umadevi, G.: Application of System Dynamic Simulation Modeling in Road Safety. Trasnportation Research Board (2011)

    Google Scholar 

  14. Le Mouël, F., Hernández, C.B., Carrillo, O., Pedraza, G.: Decentralized, robust and efficient services for an autonomous and real-time urban crisis management (2017). https://arxiv.org/abs/1703.04519

  15. Lèbre, M.A., Le Mouël, F., Ménard, E.: On the importance of real data for microscopic urban vehicular mobility trace. In: Proceedings of the 14th International Conference on ITS Telecommunications (ITST 2015), Copenhagen, Denmark, pp. 22–26, December 2015. https://doi.org/10.1109/ITST.2015.7377394

  16. Lèbre, M.A., Le Mouël, F., Ménard, E.: Partial and local knowledge for global efficiency of urban vehicular traffic. In: Proceedings of the IEEE 82nd Vehicular Technology Conference (VTC 2015-Fall), Boston, MA, USA, pp. 1–5, September 2015. https://doi.org/10.1109/VTCFall.2015.7391065

  17. Lin, T., Rivano, H., Le Mouël, F.: A survey of smart parking solutions. IEEE Trans. Intell. Transp. Syst. 18(12), 3229–3253 (2017). https://doi.org/10.1109/TITS.2017.2685143

    Article  Google Scholar 

  18. Méndez-Giraldo, G., Álvarez-Pomar, L.: Dynamic model to analyze pedestrian traffic policies in Bogota. Dyna 81(186), 276 (2014). https://doi.org/10.15446/dyna.v81n186.45219

  19. Oskarbski, J., Gumińska, L.: The application of microscopic models in the study of pedestrian traffic. In: MATEC Web of Conferences, vol. 231, pp. 1–7 (2018). https://doi.org/10.1051/matecconf/201823103003

  20. Pau, G., Campisi, T., Canale, A., Severino, A., Collotta, M., Tesoriere, G.: Smart pedestrian crossing management at traffic light junctions through a fuzzy-based approach. Future Internet 10(2) (2018). https://doi.org/10.3390/fi10020015

  21. Puentes, M., Arroyo, I., Carrillo, O., Barrios, C.J., Le Mouël, F.: Towards smart-city implementation for crisis management in fast-growing and unplanned cities: the colombian scenario. Ingeniería y Ciencia 16(32), 151–169 (2020). https://doi.org/10.17230/ingciencia.16.32.7

  22. Puentes, M., Novoa, D., Nivia, J.D., Hernndez, C.B., Carrillo, O., Le Mouël, F.: Pedestrian behaviour modeling and simulation from real time data information. In: 2nd Workshop CATAI - SmartData for Citizen Wellness, Bogotá, Colombia, October 2019. http://www.catai.fr/catai2019/

  23. Qian, S., Cao, J., Le Mouël, F., Sahel, I., Li, M.: SCRAM: a sharing considered route assignment mechanism for fair taxi route recommendations. In: Proceedings of the 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2015), Sydney, Australia, pp. 955–964, August 2015. https://doi.org/10.1145/2783258.2783261

  24. Rasouli, A., Kotseruba, I., Tsotsos, J.K.: Understanding pedestrian behavior in complex traffic scenes. IEEE Trans. Intell. Veh. 3(1), 61–70 (2018). https://doi.org/10.1109/tiv.2017.2788193. http://ieeexplore.ieee.org/document/8241847/

  25. Teknomo, K., Takeyama, Y., Inamura, H.: Review on microscopic pedestrian simulation model (March), 1–2 (2016). http://arxiv.org/abs/1609.01808

  26. Torres, G., al.: La ciudad - región sostenible como proyecto: desafíos actuales. Visiones cruzadas y perspectivas. Universidad Nacional de Colombia, Sede Bogotá, Bogotá, October 2019. http://bdigital.unal.edu.co/74466/

  27. Ulfarsson, G.F., Kim, S., Booth, K.M.: Analyzing fault in pedestrian-motor vehicle crashes in North Carolina. Accid. Anal. Prev. 42(6), 1805–1813 (2010)

    Article  Google Scholar 

  28. Yang, J., Deng, W., Wang, J., Li, Q., Wang, Z.: Modeling pedestrians’ road crossing behavior in traffic system micro-simulation in China. Transp. Res. Part A Policy Pract. 40(3), 280–290 (2006). https://doi.org/10.1016/j.tra.2005.08.001

    Article  Google Scholar 

  29. Zhang, G., Yau, K.K., Zhang, X.: Analyzing fault and severity in pedestrian-motor vehicle accidents in China. Accid. Anal. Prev. 73, 141–150 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Government and the Unidades Tecnologicas de Santander (project 879/2017). Thanks to the SC3-UIS Lab, the Colifri association, the CITI Lab at INSA Lyon and the CATAI workgroup - where this project was already discussed and received feedbacks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Puentes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Cite this paper

Puentes, M., Novoa, D., Nivia, J.M.D., Hernández, C.J.B., Carrillo, O., Mouël, F.L. (2022). Datacentric Analysis to Reduce Pedestrians Accidents: A Case Study in Colombia. In: Corchado, J.M., Trabelsi, S. (eds) Sustainable Smart Cities and Territories. SSCTIC 2021. Lecture Notes in Networks and Systems, vol 253. Springer, Cham. https://doi.org/10.1007/978-3-030-78901-5_15

Download citation

Publish with us

Policies and ethics