Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A First Sensitivity Study of Multi-object Multi-camera Tracking Performance

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations. AIAI 2021 IFIP WG 12.5 International Workshops (AIAI 2021)

Abstract

Computer Vision is becoming widely used for a myriad of purposes, e.g. people counting and tracking. To execute this application in real-time, a relatively complex algorithm processes intensive data streams to identify people in a visual scenario. Although such algorithms frequently run in powerful servers on the Cloud, it is also common that they have to run in local commodity computers with limited capacity. In this work we used the Multi-Camera Multi-Target algorithm of the recent OpenVINOTM toolkit to detect and track people in small retail stores. We ran the algorithm in a common personal computer and analyzed the variation of its performance for a set of different relevant scenarios and algorithm configurations, providing insights into how these affect the algorithm performance and computational cost. In the tested scenarios, the most influential factor was the number of people in the scene. The average frame processing time observed varied around 200 ms.

C. Pereira—This work was developed while this author was at NOS Comunicações.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the CLEAR MOT metrics. EURASIP J. Image Video Process. 2008(1), 1–10 (2008). https://doi.org/10.1155/2008/246309

    Article  Google Scholar 

  2. Bezdan, T., Bacanin, N.: Convolutional neural network layers and architectures, pp. 445–451 (2019). https://doi.org/10.15308/Sinteza-2019-445-451

  3. Bradski, G., Kaehler, A.: Opencv. Dr. Dobb’s J. Softw. Tools 3 (2000)

    Google Scholar 

  4. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation (2013)

    Google Scholar 

  5. Gong, S., Cristani, M., Loy, C.C., Hospedales, T.M.: The re-identification challenge. In: Gong, S., Cristani, M., Yan, S., Loy, C.C. (eds.) Person Re-Identification. ACVPR, pp. 1–20. Springer, London (2014). https://doi.org/10.1007/978-1-4471-6296-4_1

    Chapter  Google Scholar 

  6. Huang, J., et al.: Speed/accuracy trade-offs for modern convolutional object detectors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7310–7311 (2017)

    Google Scholar 

  7. Intel: Parallel universe issue 34 (2018). https://software.intel.com/content/dam/develop/external/us/en/documents/parallel-universe-issue-34.pdf. Accessed 10 Jan 2021

  8. Intel® : Open model zoo demos. https://docs.openvinotoolkit.org/latest/omz_demos_README.html. Accessed 10 Nov 2020

  9. Intel® : Openvino™ toolkit overview. https://docs.openvinotoolkit.org/latest/index.html. Accessed 2 Nov 2020

  10. Jia, Y., et al.: Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on Multimedia, pp. 675–678 (2014)

    Google Scholar 

  11. Jiao, L., et al.: A survey of deep learning-based object detection. IEEE Access 7, 128837–128868 (2019)

    Article  Google Scholar 

  12. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection (2017)

    Google Scholar 

  13. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  14. Pitts, W., McCulloch, W.S.: How we know universals the perception of auditory and visual forms. Bull. Math. Biophys. 9(3), 127–147 (1947)

    Article  Google Scholar 

  15. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016. https://doi.org/10.1109/cvpr.2016.91

  16. Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures and a data set for multi-target, multi-camera tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 17–35. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_2

    Chapter  Google Scholar 

  17. Ristani, E., Tomasi, C.: Features for multi-target multi-camera tracking and re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6036–6046 (2018)

    Google Scholar 

  18. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  19. Xiong, F., Gou, M., Camps, O., Sznaier, M.: Person re-identification using kernel-based metric learning methods. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 1–16. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_1

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was financially supported by: Base Funding - UIDB/04234/2020 of the Research Centre in Real-Time and Embedded Computing Systems - CISTER - funded by national funds through the FCT/MCTES (PIDDAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Almeida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramos, M., Pereira, C., Almeida, L. (2021). A First Sensitivity Study of Multi-object Multi-camera Tracking Performance. In: Maglogiannis, I., Macintyre, J., Iliadis, L. (eds) Artificial Intelligence Applications and Innovations. AIAI 2021 IFIP WG 12.5 International Workshops. AIAI 2021. IFIP Advances in Information and Communication Technology, vol 628. Springer, Cham. https://doi.org/10.1007/978-3-030-79157-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79157-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79156-8

  • Online ISBN: 978-3-030-79157-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics