Abstract
Although much research continues to be carried out on modeling of information systems, there has been a lack of work that relates the activities of modeling to human mental models. With the increased emphasis on machine learning systems, model development remains an important issue. In this research, we propose a framework for progressing from human mental models to machine learning models and implementation via the use of conceptual models. The framework is illustrated by an application to a citizen science project. Recommendations for the use of the framework are proposed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Recker, J., Lukyanenko, R., Sabegh, M.A., Samuel, B.M., Castellanos, A.: From representation to mediation: a new agenda for conceptual modeling research in a digital world. MIS Q. 45, 269–300 (2021)
Wand, Y., Weber, R.: Research commentary: Information systems and conceptual modeling- a research agenda. Inf. Syst. Res. 13, 363–376 (2002)
Storey, V.C., Trujillo, J.C., Liddle, S.W.: Research on conceptual modeling: themes, topics, and introduction to the special issue. Data Knowl. Eng. 98, 1–7 (2015)
Gentner, D., Stevens, A.L.: Mental Models. Psychology Press, New York (2014)
Johnson-Laird, P.N., Wason, P.C.: Thinking: Readings in Cognitive Science. Cambridge University Press, Cambridge (1977)
Jones, N.A., Ross, H., Lynam, T., Perez, P., Leitch, A.: Mental models: an interdisciplinary synthesis of theory and methods. Ecol. Soc. 16, 46–46 (2011)
Guarino, N., Guizzardi, G., Mylopoulos, J.: On the philosophical foundations of conceptual models. Inf. Model. Knowl. Bases 31, 1 (2020)
Fettke, P.: Conceptual modelling and artificial intelligence: overview and research challenges from the perspective of predictive business process management. Presented at the Modellierung (Companion) (2020)
Lukyanenko, R., Castellanos, A., Parsons, J., Chiarini Tremblay, M., Storey, V.C.: Using conceptual modeling to support machine learning. In: Cappiello, C., Ruiz, M. (eds.) Information Systems Engineering in Responsible Information Systems. LNBIP, vol. 350, pp. 170–181. Springer, Cham (2019)
Reimer, U., Bork, D., Fettke, P., Tropmann-Frick, M.: Preface of the first workshop models in AI. Presented at the Modellierung (Companion) (2020).
Bork, D., Garmendia, A., Wimmer, M.: Towards a Multi-Objective Modularization Approach for Entity-Relationship Models. ER Forum, Demo and Posters (2020)
Bonney, R., et al.: Next steps for citizen science. Science 343, 1436–1437 (2014)
Levy, M., Germonprez, M.: The potential for citizen science in information systems research. Comm. Assoc. Inf. Syst. 40, 2 (2017)
Show, H.: Rise of the citizen scientist. Nature 524, 265 (2015)
Theobald, E.J., et al.: Global change and local solutions: tapping the unrealized potential of citizen science for biodiversity research. Biol. Cons. 181, 236–244 (2015)
Lukyanenko, R., Wiggins, A., Rosser, H.K.: Citizen science: an information quality research frontier. Inf. Syst. Front. 22(4), 961–983 (2019). https://doi.org/10.1007/s10796-019-09915-z
Burgess, H., et al.: The science of citizen science: exploring barriers to use as a primary research tool. Biol. Cons. 208, 1–8 (2017)
McKinley, D.C., et al.: Citizen science can improve conservation science, natural resource management, and environmental protection. Biol. Conserv. 208, 15–28 (2016)
Light, A., Miskelly, C.: Design for Sharing. Northumbria University/The Sustainable Society Network, Newcastle upon Tyne (2014)
Johnson-Laird, P.N.: Mental models and human reasoning. Proc. Natl. Acad. Sci. 107(43), 18243–18250 (2010)
Maass, W., Storey, V.C.: Pairing Conceptual Modeling with Machine Learning. Data and Knowledge Engineering (2021). Forthcoming
Maass, W., Storey, V.C., Kowatsch, T.: Effects of external conceptual models and verbal explanations on shared understanding in small groups. In: Jeusfeld, M., Delcambre, L., Ling, T. (eds.) ER 2011. LNCS, vol. 6998, pp. 92–103. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24606-7_8
Johnson-Laird, P.N.: Mental Models: Towards a Cognitive Science of Language, Inference, and Consciousness. Harvard Univ Press, Cambridge, MA (1983)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
Jaakkola, H., Thalheim, B.: Sixty years–and more–of data modelling. Inf. Model. Knowl. Bases XXXII 333, 56 (2021)
Mylopoulos, J., Chung, L., Nixon, B.: Representing and using nonfunctional requirements: a process-oriented approach. IEEE Trans. Softw. Eng. 18(6), 483–497 (1992)
Pastor, O., Conceptual modeling of life: beyond the homo sapiens. In: Comyn-Wattiau, I., Tanaka, K., Song, I.Y., Yamamoto, S., Saeki, M. (eds.) Conceptual Modeling. ER 2016. LNCS, vol. 9974. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_2
Zhou, J., et al.: Graph neural networks: a review of methods and applications. AI Open, 1, 57–81 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Maass, W., Storey, V.C., Lukyanenko, R. (2021). From Mental Models to Machine Learning Models via Conceptual Models. In: Augusto, A., Gill, A., Nurcan, S., Reinhartz-Berger, I., Schmidt, R., Zdravkovic, J. (eds) Enterprise, Business-Process and Information Systems Modeling. BPMDS EMMSAD 2021 2021. Lecture Notes in Business Information Processing, vol 421. Springer, Cham. https://doi.org/10.1007/978-3-030-79186-5_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-79186-5_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-79185-8
Online ISBN: 978-3-030-79186-5
eBook Packages: Computer ScienceComputer Science (R0)