Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Paragraph Similarity Scoring and Fine-Tuned BERT for Legal Information Retrieval and Entailment

  • Conference paper
  • First Online:
New Frontiers in Artificial Intelligence (JSAI-isAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12758))

Included in the following conference series:

Abstract

The assessment of the relevance of legal documents and the application of legal rules embodied in legal documents are some of the key processes in the field of law. In this paper, we present our approach to the 2020 Competition on Legal Information Extraction/Entailment (COLIEE-2020), which provides researchers with the opportunity to find ways of accomplishing these complex tasks using computers. Here, we describe the methods used to build the models for the four tasks that are part of the competition and the results of their application. For Task 1, concerning the prediction of whether a base case cites a candidate case, we devise a method for evaluating the similarity between cases based on individual paragraph similarity. This method can be used to reduce the number of candidate cases by 85%, while maintaining over 80% of the cited cases. We then train a Support Vector Machines model to make the final prediction. The model is the best solution submitted for Task 1. We use a similar method for Task 2. For Task 3, we use an approach based on BM25 measure in combination with the identification of similar previously asked questions. For Task 4, we use a transformer model fine-tuned on existing entailment data sets as well as on the provided domain-specific statutory law data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://tfhub.dev/google/universal-sentence-encoder/4.

  2. 2.

    https://github.com/spotify/annoy.

  3. 3.

    https://spacy.io/.

  4. 4.

    https://sites.ualberta.ca/~rabelo/COLIEE2020/.

  5. 5.

    https://github.com/bjascob/LemmInflect.

  6. 6.

    https://pubmed.ncbi.nlm.nih.gov/help/#help-stopwords.

  7. 7.

    https://nlp.stanford.edu/projects/snli/.

References

  1. Bowman, S.R., Angeli, G., Potts, C., Manning, C.D.: A large annotated corpus for learning natural language inference. arXiv preprint arXiv:1508.05326 (2015)

  2. Cer D., et al.: Universal sentence encoder. arXiv preprint arXiv:1803.11175 (2018)

  3. Chalkidis, I., Androutsopoulos, I., Aletras, N.: Neural legal judgment prediction in English. arXiv preprint arXiv:1906.02059 (2019)

  4. Condevaux, C., Harispe, S., Mussard, S., Zambrano, G.: Weakly supervised one-shot classification using recurrent neural networks with attention: application to claim acceptance detection. In: JURIX, pp. 23–32 (2019)

    Google Scholar 

  5. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1007/BF00994018

    Article  MATH  Google Scholar 

  6. El Hamdani, R., Trousssel, A. Houvenagel, C.: COLIEE case law competition task 1: the legal case retrieval task. In: COLIEE 2019, pp. 10–15 (2019)

    Google Scholar 

  7. Gain, B., Bandyopadhyay, D., Saikh, T., Ekbal, A.: Iitp@coliee 2019: legal information retrieval using BM25 and BERT. In: Proceedings of the 6th Competition on Legal Information Extraction/Entailment, COLIEE 2019 (2019)

    Google Scholar 

  8. Harter, S.P.: A probabilistic approach to automatic keyword indexing. Part I. On the distribution of specialty words in a technical literature. J. Am. Soc. Inf. Sci. 26(4), 197–206 (1975)

    Article  Google Scholar 

  9. Howe, J.S.T., Khang, L.H., Chai, I.E.: Legal area classification: a comparative study of text classifiers on Singapore supreme court judgments. arXiv preprint arXiv:1904.06470 (2019)

  10. Hudzina, J., Vacek, T., Madan, K., Tonya, C., Schilder, F.: Statutory entailment using similarity features and decomposable attention models. In: Proceedings of the 6th Competition on Legal Information Extraction/Entailment, COLIEE 2019 (2019)

    Google Scholar 

  11. Kitaev, N., Kaiser, Ł., Levskaya, A.: Reformer: the efficient transformer. arXiv preprint arXiv:2001.04451 (2020)

  12. Kotsiantis, S., Kanellopoulos, D., Pintelas, P.: Handling imbalanced datasets: a review. GESTS Int. Trans. Comput. Sci. Eng. 30(1), 25–36 (2016)

    Google Scholar 

  13. Liu, Y., et al.: Roberta: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  14. Manning, C.D., Schütze, H., Raghavan, P.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  15. Mitra, B., Nalisnick, E., Craswell, N., Caruana, R.: A dual embedding space model for document ranking. arXiv preprint arXiv:1602.01137 (2016)

  16. Murdock, V.G.: Aspects of sentence retrieval. Department of Computer Science, Massachusetts University Amherst (2006)

    Google Scholar 

  17. Paulino-Passos, G., Toni, F.: Retrieving legal cases with vector representations of text. In: Proceedings of COLIEE 2019, pp. 50–55 (2019)

    Google Scholar 

  18. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Classif. 10, 61–74 (1999)

    Google Scholar 

  20. Rabelo, J., Kim, M.Y., Goebel, R.: Combining similarity and transformer methods for case law entailment. In: Proceedings of the Seventeenth International Conference on Artificial Intelligence and Law, pp. 290–296 (2019)

    Google Scholar 

  21. Robertson, S., Zaragoza, H.: The Probabilistic Relevance Framework: BM25 and Beyond. Now Publishers Inc., Delft (2009)

    Google Scholar 

  22. Robertson, S.E., Walker, S.: Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval. In: Croft, B.W., van Rijsbergen, C.J. (eds.) SIGIR’94, pp. 232–241. Springer, London (1994). https://doi.org/10.1007/978-1-4471-2099-5_24

    Chapter  Google Scholar 

  23. Rossi, J., Kanoulas, E.: Legal search in case law and statute law. In: JURIX, pp. 83–92 (2019)

    Google Scholar 

  24. Sanchez, L., He, J., Manotumruksa, J., Albakour, D., Martinez, M., Lipani, A.: Easing legal news monitoring with learning to Rank and BERT. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12036, pp. 336–343. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45442-5_42

    Chapter  Google Scholar 

  25. Savelka, J.: Discovering sentences for argumentation about the meaning of statutory terms. Doctoral dissertation, University of Pittsburgh (2020)

    Google Scholar 

  26. Savelka, J., Walker, V.R., Grabmair, M., Ashley, K.D.: Sentence boundary detection in adjudicatory decisions in the United States. Traitement automatique des langues 58, 21 (2017)

    Google Scholar 

  27. Shao, Y., et al.: BERT-PLI: modeling paragraph-level interactions for legal case retrieval. In: Electronic Proceedings of IJCAI 2020, vol. 4, pp. 3501–3507 (2020)

    Google Scholar 

  28. Westermann, H., Savelka, J., Walker, V.R., Ashley, K.D., Benyekhlef, K.: Sentence embeddings and high-speed similarity search for fast computer assisted annotation of legal documents. In: Legal Knowledge and Information Systems: JURIX 2020, Brno, Czech Republic, 9–11 December 2020, vol. 334. IOS Press (2020)

    Google Scholar 

  29. Williams, A., Nangia, N., Bowman, S.R.: A broad-coverage challenge corpus for sentence understanding through inference. arXiv preprint arXiv:1704.05426 (2017)

  30. Zhang, Z., et al.: Semantics-aware BERT for language understanding. arXiv preprint arXiv:1909.02209 (2019)

Download references

Acknowledgements

We would like to thank the Cyberjustice Laboratory at Université de Montréal, the LexUM Chair on Legal Information, and the Autonomy through Cyberjustice Technologies (ACT) project for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Westermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Westermann, H., Savelka, J., Benyekhlef, K. (2021). Paragraph Similarity Scoring and Fine-Tuned BERT for Legal Information Retrieval and Entailment. In: Okazaki, N., Yada, K., Satoh, K., Mineshima, K. (eds) New Frontiers in Artificial Intelligence. JSAI-isAI 2020. Lecture Notes in Computer Science(), vol 12758. Springer, Cham. https://doi.org/10.1007/978-3-030-79942-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79942-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79941-0

  • Online ISBN: 978-3-030-79942-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics