Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Metamorphic Image Registration Using a Semi-lagrangian Scheme

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12829))

Included in the following conference series:

Abstract

In this paper, we propose an implementation of both Large Deformation Diffeomorphic Metric Mapping (LDDMM) and Metamorphosis image registration using a semi-Lagrangian scheme for geodesic shooting. We propose to solve both problems as an inexact matching providing a single and unifying cost function. We demonstrate that for image registration the use of a semi-Lagrangian scheme is more stable than a standard Eulerian scheme. Our GPU implementation is based on PyTorch, which greatly simplifies and accelerates the computations thanks to its powerful automatic differentiation engine. It will be freely available at https://github.com/antonfrancois/Demeter_metamorphosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-euclidean framework for statistics on diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006). https://doi.org/10.1007/11866565_113

    Chapter  Google Scholar 

  2. Ashburner, J.: A fast diffeomorphic image registration algorithm. NeuroImage 38(1), 95–113 (2007)

    Article  Google Scholar 

  3. Ashburner, J., Friston, K.J.: Diffeomorphic registration using geodesic shooting and Gauss–Newton optimisation. NeuroImage 55(3), 954–967 (2011)

    Article  Google Scholar 

  4. Avants, B.B., Schoenemann, P.T., Gee, J.C.: Lagrangian frame diffeomorphic image registration: morphometric comparison of human and chimpanzee cortex. Med. Image Anal. 10(3), 397–412 (2006)

    Article  Google Scholar 

  5. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. IJCV 61(2), 139–157 (2005). https://doi.org/10.1023/B:VISI.0000043755.93987.aa

    Article  Google Scholar 

  6. Dupuis, P., Grenander, U., Miller, M.I.: Variational problems on flows of diffeomorphisms for image matching. Q. Appl. Math. 56(3), 587–600 (1998)

    Article  MathSciNet  Google Scholar 

  7. Efremov, A., Karepova, E., Shaydurov, V., Vyatkin, A.: A computational realization of a semi-lagrangian method for solving the advection equation. JAM 2014, 1–12 (2014)

    MATH  Google Scholar 

  8. Gooya, A., Pohl, K.M., Bilello, M., Cirillo, L., Biros, G., Melhem, E.R., Davatzikos, C.: GLISTR: Glioma image segmentation and registration. IEEE Trans. Med. Imaging 31(10), 1941–1954 (2012)

    Article  Google Scholar 

  9. Gris, B., Chen, C., Öktem, O.: Image reconstruction through metamorphosis. Inverse Prob. 36(2), 025001 (2020)

    Article  MathSciNet  Google Scholar 

  10. Holm, D.D., Trouvé, A., Younes, L.: The Euler-Poincaré theory of metamorphosis. QAL 67(4), 661–685 (2009)

    MATH  Google Scholar 

  11. Liu, X., Niethammer, M., Kwitt, R., Singh, N., McCormick, M., Aylward, S.: Low-rank atlas image analyses in the presence of pathologies. IEEE Trans. Med. Imaging 34(12), 2583–2591 (2015)

    Article  Google Scholar 

  12. Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. J. Math. Imaging Vis. 24(2), 209–228 (2006)

    Article  MathSciNet  Google Scholar 

  13. Richardson, C.L., Younes, L.: Metamorphosis of images in reproducing kernel Hilbert spaces. Adv. Comput. Math. 42(3), 573–603 (2015). https://doi.org/10.1007/s10444-015-9435-y

    Article  MathSciNet  MATH  Google Scholar 

  14. Ripollés, P., et al.: Analysis of automated methods for spatial normalization of lesioned brains. NeuroImage 60(2), 1296–1306 (2012)

    Article  Google Scholar 

  15. Sdika, M., Pelletier, D.: Nonrigid registration of multiple sclerosis brain images using lesion inpainting for morphometry or lesion mapping. Hum. Brain Mapp. 30(4), 1060–1067 (2009)

    Article  Google Scholar 

  16. Trouvé, A., Younes, L.: Local geometry of deformable templates. SIAM 37(1), 17–59 (2005)

    Article  MathSciNet  Google Scholar 

  17. Vialard, F.X., Risser, L., Rueckert, D., Cotter, C.J.: Diffeomorphic 3D image registration via geodesic shooting using an efficient adjoint calculation. IJCV 97(2), 229–241 (2011). https://doi.org/10.1007/s11263-011-0481-8

    Article  MathSciNet  MATH  Google Scholar 

  18. Younes, L.: Shapes and Diffeomorphisms. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12055-8

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton François .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

François, A., Gori, P., Glaunès, J. (2021). Metamorphic Image Registration Using a Semi-lagrangian Scheme. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2021. Lecture Notes in Computer Science(), vol 12829. Springer, Cham. https://doi.org/10.1007/978-3-030-80209-7_84

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80209-7_84

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80208-0

  • Online ISBN: 978-3-030-80209-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics