Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Learning to Solve Geometric Construction Problems from Images

  • Conference paper
  • First Online:
Intelligent Computer Mathematics (CICM 2021)

Abstract

We describe a purely image-based method for finding geometric constructions with a ruler and compass in the Euclidea geometric game. The method is based on adapting the Mask R-CNN state-of-the-art visual recognition neural architecture and adding a tree-based search procedure to it. In a supervised setting, the method learns to solve all 68 kinds of geometric construction problems from the first six level packs of Euclidea with an average 92% accuracy. When evaluated on new kinds of problems, the method can solve 31 of the 68 kinds of Euclidea problems. We believe that this is the first time that purely image-based learning has been trained to solve geometric construction problems of this difficulty.

This work was partly supported by the European Regional Development Fund under the projects IMPACT and AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000468 and CZ.02.1.01/0.0/0.0/15_003/0000466) and the ERC Consolidator grant SMART no. 714034.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://imo-grand-challenge.github.io/.

  2. 2.

    https://github.com/mackej/Learning-to-solve-geometric-construction-problems-from-images, https://github.com/mirefek/py_euclidea/.

References

  1. Project webpage. https://data.ciirc.cvut.cz/public/projects/2021GeometryReasoning

  2. Euclidea. https://www.euclidea.xyz

  3. He K., Gkioxari G., Dollár P., Girshick, R.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  4. Seo, M.J., Hajishirzi, H., Farhadi, A., Etzioni, O.: Diagram understanding in geometry questions. In: American Association for Artificial Intelligence (2014)

    Google Scholar 

  5. Seo, M., Hajishirzi, H., Farhadi, A., Etzioni, O., Malcolm, C.: Solving geometry problems: combining text and diagram interpretation. Association for Computational Linguistics (2015)

    Google Scholar 

  6. Quaresma, P.: Thousands of Geometric Problems for Geometric Theorem Provers (TGTP). Springer, Heidelberg (2011)

    Book  Google Scholar 

  7. Vesna, M.: ArgoTriCS – automated triangle construction solver. J. Exper. Theor. Artif. Intell. 29(2), 247–271 (2017)

    Google Scholar 

  8. Balbiani, P., Cerro, L.F.: Affine Geometry of Collinearity and Conditional Term Rewriting. Springer, Heidelberg (1995)

    Book  Google Scholar 

  9. Chou, S.C., Gao, X.S., Zhang, J.Z.: A deductive database approach to automated geometry theorem proving and discovering. J. Autom. Reasoning 25, 219–246 (2000)

    Article  MathSciNet  Google Scholar 

  10. Gao, X.: Transcendental functions and mechanical theorem proving in elementary geometries. J. Autom. Reasoning 6, 403–417 (1990)

    Article  MathSciNet  Google Scholar 

  11. Deepak, K.: Using Gröbner bases to reason about geometry problems. J. Symbolic Comput. 2(4), 399–408 (1986)

    Article  MathSciNet  Google Scholar 

  12. Chou, S.C., Gao, X.S., Zhang, J.: Machine Proofs in Geometry: Automated Production of Readable Proofs for Geometry Theorems (1994)

    Google Scholar 

  13. McCune, W., Wos, L.: Otter: the CADE-13 competition incarnations. J. Autom. Reasoning 18(2), 211–220 (1997)

    Article  Google Scholar 

  14. McCune, W.: Prover9 and Mace4. http://www.cs.unm.edu/~mccune/prover9/

  15. Beeson, M., Wos, L.: Finding proofs in Tarskian geometry. J. Autom. Reasoning 58(1), 201–207 (2017)

    Article  MathSciNet  Google Scholar 

  16. Durdevic, S.S., Narboux, J., Janicic, P.: Automated generation of machine verifiable and readable proofs: a case study of Tarski’s geometry. Ann. Math. Artif. Intell. 74(3–4), 249–269 (2015)

    Article  MathSciNet  Google Scholar 

  17. Quaife, A.: Automated Development of Fundamental Mathematical Theories. Kluwer Academic Publishers, Dordrecht (1992)

    MATH  Google Scholar 

  18. Beeson, M., Narboux, J., Wiedijk, F.: Proof-checking Euclid. Ann. Math. Artif. Intell. 85, 213–257 (2019). https://doi.org/10.1007/s10472-018-9606-x

    Article  MathSciNet  MATH  Google Scholar 

  19. Jakubův, J., Chvalovský, K., Olšák, M., Piotrowski, B., Suda, M., Urban, J.: ENIGMA anonymous: symbol-independent inference guiding machine (System Description). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12167, pp. 448–463. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51054-1_29

    Chapter  Google Scholar 

  20. Gauthier, T., Kaliszyk, C., Urban, J., Kumar, R., Norrish, M.: TacticToe: learning to prove with tactics. J. Autom. Reasoning 65(2), 257–286 (2021)

    Article  MathSciNet  Google Scholar 

  21. Hosang, J., Benenson, R., Schiele, B.: Learning non-maximum suppression. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiri Sedlar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Macke, J., Sedlar, J., Olsak, M., Urban, J., Sivic, J. (2021). Learning to Solve Geometric Construction Problems from Images. In: Kamareddine, F., Sacerdoti Coen, C. (eds) Intelligent Computer Mathematics. CICM 2021. Lecture Notes in Computer Science(), vol 12833. Springer, Cham. https://doi.org/10.1007/978-3-030-81097-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81097-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81096-2

  • Online ISBN: 978-3-030-81097-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics