Abstract
We construct a short and adaptively secure identity-based signature scheme tightly based on the well-known Short Integer Solution (SIS) assumption. Although identity-based signature schemes can be tightly constructed from either standard signature schemes against adaptive corruptions in the multi-user setting or a two-level hierarchical identity-based encryption scheme, neither of them is known with short signature size and tight security based on the SIS assumption. Here “short” means the signature size is independent of the message length, which is in contrast to the tree-based (tight) signatures.
Our approach consists of two steps: Firstly, we give two generic transformations (one with random oracles and the other without) from non-adaptively secure identity-based signature schemes to adaptively secure ones tightly. Our idea extends the similar transformation for digital signature schemes. Secondly, we construct a non-adaptively secure identity-based signature scheme based on the SIS assumption in the random oracle model.
B. Wagner—This work was done while the second author was doing an internship with the first author at NTNU, and it was partially supported by the Erasmus + traineeship program.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure signatures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 572–590. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_34
Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: 28th ACM STOC, pp. 99–108. ACM Press, May 1996
Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 629–658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_26
Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_42
Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting: security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_18
Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identification and signature schemes. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 268–286. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_17
Bellare, M., Ristenpart, T.: Simulation without the artificial abort: simplified proof and improved concrete security for Waters’ IBE scheme. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 407–424. Springer, Heidelberg (Apr (2009)
Blazy, O., Kakvi, S.A., Kiltz, E., Pan, J.: Tightly-secure signatures from chameleon hash functions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 256–279. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_12
Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_23
Boyen, X., Li, Q.: Towards tightly secure lattice short signature and Id-based encryption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 404–434. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_14
Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27
Chen, J., Wee, H.: Fully, (Almost) tightly secure IBE and dual system groups. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 435–460. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_25
Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_19
del Pino, R., Lyubashevsky, V., Neven, G., Seiler, G.: Practical quantum-safe voting from lattices. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1565–1581. ACM Press, October/November 2017
Diemert, D., Gellert, K., Jager, T., Lyu, L.: More efficient digital signatures with tight multi-user security. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12711, pp. 1–31. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75248-4_1
Dodis, Y., Katz, J., Xu, S., Yung, M.: Strong key-insulated signature schemes. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 130–144. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_10
Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehle, D.: CRYSTALS - Dilithium: Digital signatures from module lattices. Cryptology ePrint Archive, Report 2017/633 (2017). http://eprint.iacr.org/2017/633
Fouque, P.A., et al.: Falcon: Fast-Fourier lattice-based compact signatures over NTRU. Submission to the NIST’s Post-Quantum Cryptography Standardization Process 36 (2018)
Gay, R., Hofheinz, D., Kohl, L.: Kurosawa-Desmedt meets tight security. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 133–160. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_5
Gay, R., Hofheinz, D., Kohl, L., Pan, J.: More efficient (Almost) tightly secure structure-preserving signatures. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 230–258. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_8
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. Cryptology ePrint Archive, Report 2007/432 (2007). http://eprint.iacr.org/2007/432
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press, May 2008
Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_34
Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authenticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 95–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_4
Goh, E.J., Jarecki, S., Katz, J., Wang, N.: Efficient signature schemes with tight reductions to the Diffie-Hellman problems. J. Cryptol. 20(4), 493–514 (2007)
Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)
Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_24
Hofheinz, D.: Algebraic partitioning: fully compact and (almost) tightly secure cryptography. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part I. LNCS, vol. 9562, pp. 251–281. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9_11
Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_35
Jager, T., Kurek, R., Pan, J.: Simple and more efficient PRFs with tight security from LWE and matrix-DDH. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 490–518. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_18
Katsumata, S., Yamada, S., Yamakawa, T.: Tighter security proofs for GPV-IBE in the quantum random oracle model. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 253–282. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_9
Kiltz, E., Neven, G.: Identity-based signatures. In: Joye, M., Neven, G. (eds.) Identity-Based Cryptography. IOS Press (2009)
Kim, S.: Key-homomorphic pseudorandom functions from LWE with small modulus. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 576–607. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_20
Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000. The Internet Society, February 2000
Langrehr, R., Pan, J.: Tightly secure hierarchical identity-based encryption. In: Lin, D., Sako, K. (eds.) PKC 2019, Part I. LNCS, vol. 11442, pp. 436–465. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4_15
Langrehr, R., Pan, J.: Hierarchical identity-based encryption with tight multi-challenge security. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110, pp. 153–183. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9_6
Langrehr, R., Pan, J.: Unbounded HIBE with tight security. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 129–159. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_5
Lee, Y., Park, J.H., Lee, K., Lee, D.H.: Tight security for the generic construction of identity-based signature (in the multi-instance setting). Theor. Comput. Sci. 847, 122–133 (2020). https://www.sciencedirect.com/science/article/pii/S0304397520305557
Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43
Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. Cryptology ePrint Archive, Report 2011/501 (2011). http://eprint.iacr.org/2011/501
Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41
Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. In: 45th FOCS, pp. 372–381. IEEE Computer Society Press, October 2004
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press, May 2005
Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_5
Zhang, X., Liu, S., Gu, D., Liu, J.K.: A generic construction of tightly secure signatures in the multi-user setting. Theor. Comput. Sci. 775, 32–52 (2019). https://www.sciencedirect.com/science/article/pii/S0304397518307333
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Pan, J., Wagner, B. (2021). Short Identity-Based Signatures with Tight Security from Lattices. In: Cheon, J.H., Tillich, JP. (eds) Post-Quantum Cryptography. PQCrypto 2021. Lecture Notes in Computer Science(), vol 12841. Springer, Cham. https://doi.org/10.1007/978-3-030-81293-5_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-81293-5_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-81292-8
Online ISBN: 978-3-030-81293-5
eBook Packages: Computer ScienceComputer Science (R0)