Abstract
The paper presents an approach to the representation of various types of information that is accumulated at the level of different scientific and educational organizations with the purpose of further assessment of the quality of their functioning. This approach is based on ontological modelling. Ontology allows structuring and organizing scientific and educational organizations information aiming its representation and analyses. General ontology of scientific and educational organizations information is divided into several ontologies in order to represent all aspects and important indicators of organizations performance. Ontological system elements are described. Practical implementation of proposed ontology and its filling with information was performed using cognitive IT-platform “POLYHEDRON”.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Feigelman, M.: How to evaluate the performance of FANO institutions. Private view of the participant in the process. Trinity Option 13(182), 1–2 (2015)
Hicks, D., Wouters, P., Waltman, L., de Rijcke, S., Rafols, I.: The leiden manifesto for research metrics. Nature 520, 429–431 (2015). https://doi.org/10.1038/520429a
Methodology for evaluating the effectiveness of the activities of scientific institutions of the National Academy of Sciences of Ukraine (in Ukrainian), Resolution of the NAS Presidium of Ukraine 241, July 2018. http://www.nas.gov.ua/legaltexts/DocPublic/P-180711-241-1.pdf
Varshavsky, A.E., Ivanov, V.V., Markusova, V.A.: On an adequate assessment of the effectiveness of scientific. Bull. Rus. Acad. Sci. 81(7), 587–593 (2011)
Mikhailov, O.V.: Criteria and parameters of an objective assessment of the quality of scientific activity. Bull. Rus. Acad. Sci. 81(7), 622–625 (2011)
White Paper: On Artificial Intelligence - A European approach to excellence and trust. Brussels: European Commission, pp. 1–27 (2020)
Russell, S.J.; Norvig, P.: Artificial Intelligence: A Modern Approach. 3rd ed. Prentice Hall, Hoboken (2010)
Harmelen, F., Lifschitz, V., Porter, B.: The Handbook of Knowledge Representation, p. 1034. Elsevier Science, San Diego (2007)
Hermann, H.: Knowledge Representation and the Semantics of Natural Language, p. 647. Springer, Berlin, Heidelberg, New York (2006)
Sowa, J.: The role of logic and ontology in language and reasoning. In: Poli, R., Seibt, J. (eds.) Theory and Applications of Ontology: Philosophical Perspectives, pp. 231–263. Springer, Dordrecht (2010). https://doi.org/10.1007/978-90-481-8845-1_11
Tanwar, P., Prasad, T., Dutt, K.: A tour towards the various knowledge representation techniques for cognitive hybrid sentence modeling and analyzer. Int. J. Inform. Commun. Technol. 7 (3), 124–134 (2018). https://doi.org/10.11591/ijict.v7i3.pp124-134
Changrui, Y., Yan, L.: Comparative research on methodologies for domain ontology development. In: Huang, D.S., Gan, Y., Gupta, P., Gromiha, M.M. (eds.) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence, ICIC 2011. Lecture Notes in Computer Science, vol. 6839, pp. 349–356. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25944-9_45
Uschold, M., et al.: Making the case for ontology. Appl. Ontol. 7, 373–373 (2012). https://doi.org/10.3233/AO-2012-0110
Novogrudska, R.L., Globa, L.S., Koval, O.V., Senchenko, V.R.: Ontology model of intelligent modeling system for marine facilities identification. In: International Conference on Radio Electronics & Info Communications (UkrMiCo), pp. 1–5 (2017). https://doi.org/10.1109/UkrMiCo.2017.8095426
Globa, L., Novogrudsk, R., Oriekhov, O.: Method of heterogeneous information resources structuring and systematizing for Internet portals development. In: Eurocon 2013, pp. 319–326 (2013). https://doi.org/10.1109/EUROCON.2013.6625003
Stryzhak, O., Prykhodniuk, V., Podlipaiev, V.: Model of transdisciplinary representation of GEOspatial information. In: Ilchenko, M., Uryvsky, L., Globa, L. (eds.) Advances in Information and Communication Technologies. UKRMICO 2018. Lecture Notes in Electrical Engineering, vol. 560, pp. 34–75. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16770-7_3
Dovgyi, S., Stryzhak, O.: Transdisciplinary fundamentals of information-analytical activity. In: Ilchenko, M., Uryvsky, L., Globa, L. (eds.) Advances in Information and Communication Technology and Systems. MCT 2019. Lecture Notes in Networks and Systems, vol. 152, pp. 99–126. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58359-0_7
Popova, M., Novogrudska, R.: Transdisciplinary system for student youth educational and research activities support. In: 2020 IEEE 15th International Conference on Computer Sciences and Information Technologies (CSIT), Zbarazh, Ukraine, 2020, pp. 320–323 (2020). https://doi.org/10.1109/CSIT49958.2020.9321894
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Globa, L., Novogrudska, R., Popova, M., Zadoienko, B., Junfeng, Y. (2022). Ontology-Driven Approach to Research and Educational Organization Information Representation. In: Choraś, M., Choraś, R.S., Kurzyński, M., Trajdos, P., Pejaś, J., Hyla, T. (eds) Progress in Image Processing, Pattern Recognition and Communication Systems. CORES IP&C ACS 2021 2021 2021. Lecture Notes in Networks and Systems, vol 255. Springer, Cham. https://doi.org/10.1007/978-3-030-81523-3_31
Download citation
DOI: https://doi.org/10.1007/978-3-030-81523-3_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-81522-6
Online ISBN: 978-3-030-81523-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)