Abstract
With the burgeoning growth of the Internet of Everything (IoE), the amount of data generated by these edge devices has increased dramatically. Terabytes of sensor data could be generated per vehicle per day, which makes it impossible for uploading them into the cloud and process. On the other hand, with more and more computation resources deployed on the vehicle, lots of researches embrace the design which incorporate cloud and edge computing. However, the algorithm deployment of algorithms like DNNs still faces several challenges: one is the data volume, another is data privacy. What role should the edge play to support CAVs applications? In this chapter, we introduce two cloud-edge collaboration systems to support CAVs applications. One is CLONE, which is a collaborative learning setting on the edges (CLONE) which is able to mainly demonstrate the effectiveness of latency reduction and privacy-preserving. The other is pBEAM, which is a collaborative cloud-edge computation system for personalized driving behavior modeling.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.: Tensorflow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI), vol. 16, pp. 265–283 (2016)
Alam, M.G.R., Hassan, M.M., Uddin, M.Z., Almogren, A., Fortino, G.: Autonomic computation of floading in mobile edge for IoT applications. Fut. Gener. Comput. Syst. 90, 149–157 (2019)
Bao, L., Fan, L., Miao, Z.: Real-time simulation of electric vehicle battery charging systems. In: 2018 North American Power Symposium (NAPS), pp. 1–6. IEEE, New York (2018)
Bort, J.: The ‘Google Brain’ is a real thing but very few people have seen it. (2016). http://www.businessinsider.com/what-isgoogle-brain-2016-9
Bowne, B.F., Baker, N.R., Marzinzik, D.L., Riley, M.E., Christopulos, N.U., Fields, B.M., Wilson, J.L., Wilkerson, B.T., Thurber, D.W., et al.: Methods to determine a vehicle insurance premium based on vehicle operation data collected via a mobile device (2013). US Patent App. 13/763,231
Cheng, K.W.E., Divakar, B., Wu, H., Ding, K., Ho, H.F.: Battery-management system (BMS) and SOC development for electrical vehicles. IEEE Trans. Veh. Technol. 60(1), 76–88 (2011)
Claudio, S., Giancarlo, F.: A simulation-driven methodology for IoT data mining based on edge computing, in ACM Transactions on Internet Technology (TOIT) (2020)
Collaborative learning on the edges: A case study on connected vehicles. In: 2nd USENIX Workshop on Hot Topics in Edge Computing (HotEdge 19). USENIX Association, Renton, WA (2019). https://www.usenix.org/conference/hotedge19/presentation/lu
dos Santos Lima, F.D., Amaral, G.M.R., de Moura Leite, L.G., Gomes, J.P.P., de Castro Machado, J.: Predicting failures in hard drives with LSTM networks. In: Proceedings of the 2017 Brazilian Conference on Intelligent Systems (BRACIS), pp. 222–227. IEEE, New York (2017)
Feng, Z., George, S., Harkes, J., Pillai, P., Klatzky, R., Satyanarayanan, M.: Edge-based discovery of training data for machine learning. In: 2018 IEEE/ACM Symposium on Edge Computing (SEC), pp. 145–158. IEEE, New York (2018)
Forecast, G.: Cisco visual networking index: Global mobile data traffic forecast update 2017–2022. Update 2017, 2022 (2019)
Fotouhi, A., Auger, D.J., Propp, K., Longo, S., Wild, M.: A review on electric vehicle battery modelling: From lithium-ion toward lithium–sulphur. Renew. Sustain. Energy Rev. 56, 1008–1021 (2016)
Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)
Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610 (2005)
Grulich, P.M., Nawab, F.: Collaborative edge and cloud neural networks for real-time video processing. Proceedings of the VLDB Endowment 11(12), 2046–2049 (2018)
Gulli, A., Pal, S.: Deep Learning with Keras. Packt Publishing Ltd, Birmingham (2017)
He, L., Kim, E., Shin, K.G., Meng, G., He, T.: Battery state-of-health estimation for mobile devices. In: 2017 ACM/IEEE 8th International Conference on Cyber-Physical Systems (ICCPS), pp. 51–60. IEEE, New York (2017)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Hung, C.C., Ananthanarayanan, G., Bodik, P., Golubchik, L., Yu, M., Bahl, P., Philipose, M.: VideoEdge: processing camera streams using hierarchical clusters. In: 2018 IEEE/ACM Symposium on Edge Computing (SEC), pp. 115–131. IEEE, New York (2018)
Jang, S.Y., Lee, Y., Shin, B., Lee, D.: Application-aware IoT camera virtualization for video analytics edge computing. In: 2018 IEEE/ACM Symposium on Edge Computing (SEC), pp. 132–144. IEEE, New York (2018)
Jouppi, N.: Google supercharges machine learning tasks with TPU custom chip. (2016). https://cloud.google.com/blog/products/gcp/google-supercharges-machine-learning-tasks-with-custom-chip
Kang, Y., Hauswald, J., Gao, C., Rovinski, A., Mudge, T., Mars, J., Tang, L.: Neurosurgeon: collaborative intelligence between the cloud and mobile edge. ACM Sigplan Not. 52(4), 615–629 (2017)
Kaplan, S., Guvensan, M.A., Yavuz, A.G., Karalurt, Y.: Driver behavior analysis for safe driving: a survey. IEEE Trans. Intell. Transport. Syst. 16(6), 3017–3032 (2015)
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.Y.: LightGBM: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems, pp. 3146–3154 (2017)
Kim, J.H.: Estimating classification error rate: repeated cross-validation, repeated hold-out and bootstrap. Comput. Stat. Data Anal. 53(11), 3735–3745 (2009)
Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Artificial Intelligence (IJCAI), vol. 14, pp. 1137–1145 (1995)
Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency (2016). Preprint. arXiv:1610.05492
Lee, K., Flinn, J., Noble, B.D.: Gremlin: scheduling interactions in vehicular computing. In: Proceedings of the 2nd ACM/IEEE Symposium on Edge Computing, pp. 1–13 (2017)
Li, B., Wang, W., Jia, L., Wang, D., Kong, A.: Study on HIL system of electric vehicle controller based on NI. In: IOP Conference Series: Materials Science and Engineering, vol. 382, p. 052033. IOP Publishing, Bristol (2018)
Li, H.P., Li, Y.w.: The research of electric vehicle’s MCU system based on iso26262. In: 2017 2nd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), pp. 336–340. IEEE, New York (2017)
Liaw, A., Wiener, M., et al.: Classification and regression by randomForest. R news 2(3), 18–22 (2002)
Liu, L., Zhang, X., Qiao, M., Shi, W.: SafeShareRide: edge-based attack detection in ridesharing services. In: 2018 IEEE/ACM Symposium on Edge Computing (SEC), pp. 17–29 (2018). https://doi.org/10.1109/SEC.2018.00009
Lovejoy, B.: Apple moves to third-generation Siri back-end, built on open-source Mesos platform. (2015). https://9to5mac.com/2015/04/27/siri-backend-mesos/
Lu, S., Luo, B., Patel, T., Yao, Y., Tiwari, D., Shi, W.: Making disk failure predictions SMARTer! In: 18th USENIX Conference on File and Storage Technologies (FAST), pp. 151–167 (2020)
Lu, S., Yuan, X., Shi, W.: EdgeCompression: an integrated framework for compressive imaging processing on CAVs. In: Proceedings of the 5th ACM/IEEE Symposium on Edge Computing (SEC) (2020)
Ma, C., Dai, X., Zhu, J., Liu, N., Sun, H., Liu, M.: Drivingsense: dangerous driving behavior identification based on smartphone autocalibration. Mob. Inf. Syst. 2017 (2017). https://doi.org/10.1155/2017/9075653
Ma, L., Yi, S., Li, Q.: Efficient service handoff across edge servers via docker container migration. In: Proceedings of the Second ACM/IEEE Symposium on Edge Computing, pp. 1–13 (2017)
Ma, Y., Zhang, K., Gu, J., Li, J., Lu, D.: Design of the control system for a four-wheel driven micro electric vehicle. In: 2009 IEEE Vehicle Power and Propulsion Conference, pp. 1813–1816. IEEE, New York (2009)
Mao, Y., Yi, S., Li, Q., Feng, J., Xu, F., Zhong, S.: Learning from differentially private neural activations with edge computing. In: 2018 IEEE/ACM Symposium on Edge Computing (SEC), pp. 90–102. IEEE, New York (2018)
Mearian, B.L.: Self-driving cars could create 1GB of data a second (2013). https://www.computerworld.com/article/2484219/emerging-technology/self-driving-cars-could-create-1gb-of-data-a-second.html
Mogren, O.: C-RNN-GAN: continuous recurrent neural networks with adversarial training (2016). Preprint. arXiv:1611.09904
Naic: Usage-based insurance and telematics, https://www.naic.org (2018). https://www.naic.org/cipr_topics/topic_usage_based_insurance.htm
Organization, W.H.: Global Status Report on Road Safety 2015. World Health Organization (2015)
Park, D., Kim, S., An, Y., Jung, J.Y.: Lired: A light-weight real-time fault detection system for edge computing using LSTM recurrent neural networks. Sensors 18(7), 2110 (2018)
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Peled, E., Golodnitsky, D., Mazor, H., Goor, M., Avshalomov, S.: Parameter analysis of a practical lithium-and sodium-air electric vehicle battery. J. Power Sources 196(16), 6835–6840 (2011)
Ran, L., Junfeng, W., Haiying, W., Gechen, L.: Design method of can bus network communication structure for electric vehicle. In: International Forum on Strategic Technology 2010, pp. 326–329. IEEE, New York (2010)
Regulation, P.: General data protection regulation. Off. J. Eur. Union 59, 1–88 (2016)
Rodriguez, J.D., Perez, A., Lozano, J.A.: Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans. Patt. Anal. Mach. Intell. 32(3), 569–575 (2010)
Rossi, T.: Autonomous and adas test cars produce over 11 tb of data per day (article) (October 10, 2018). https://www.tuxera.com/blog/autonomous-and-adas-test-cars-produce-over-11-tb-of-data-per-day/
Sarrafan, K., Muttaqi, K.M., Sutanto, D.: Real-time state-of-charge tracking system using mixed estimation algorithm for electric vehicle battery system. In: 2018 IEEE Industry Applications Society Annual Meeting (IAS), pp. 1–8. IEEE, New York (2018)
Satyanarayanan, M.: The emergence of edge computing. Computer 50(1), 30–39 (2017). https://doi.org/10.1109/MC.2017.9
Savaglio, C., Gerace, P., Di Fatta, G., Fortino, G.: Data mining at the IoT edge. In: 2019 28th International Conference on Computer Communication and Networks (ICCCN), pp. 1–6. IEEE, New York (2019)
SecurityInfoWatch: Data generated by new surveillance cameras to increase exponentially in the coming years (January 20, 2016). https://www.securityinfowatch.com/video-surveillance/news/12160483
Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)
Ulm, G., Gustavsson, E., Jirstrand, M.: OODIDA: on-board/off-board distributed data analytics for connected vehicles (2019). Preprint. arXiv:1902.00319
Vulimiri, A., Curino, C., Godfrey, P.B., Jungblut, T., Karanasos, K., Padhye, J., Varghese, G.: Wanalytics: geo-distributed analytics for a data intensive world. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1087–1092. ACM, New York (2015)
Wang, Y., Liu, S., Wu, X., Shi, W.: Cavbench: a benchmark suite for connected and autonomous vehicles. In: 2018 IEEE/ACM Symposium on Edge Computing (SEC), pp. 30–42. IEEE, New York (2018)
Xing, Y., Ma, E.W., Tsui, K.L., Pecht, M.: Battery management systems in electric and hybrid vehicles. Energies 4(11), 1840–1857 (2011)
Yan, X.W., Guo, Y.W., Cui, Y., Wang, Y.W., Deng, H.R.: Electric vehicle battery SOC estimation based on GNL model adaptive Kalman filter. J. Phys. Conf. Ser. 1087, 052027. IOP Publishing (2018)
Ye, J., Chow, J.H., Chen, J., Zheng, Z.: Stochastic gradient boosted distributed decision trees. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 2061–2064. ACM, New York (2009)
Yi, S., Hao, Z., Zhang, Q., Zhang, Q., Shi, W., Li, Q.: LAVEA: latency-aware video analytics on edge computing platform. In: Proceedings of the 2nd ACM/IEEE Symposium on Edge Computing, pp. 1–13 (2017)
You, C.W., Lane, N.D., Chen, F., Wang, R., Chen, Z., Bao, T.J., Montes-de Oca, M., Cheng, Y., Lin, M., Torresani, L., et al.: Carsafe app: alerting drowsy and distracted drivers using dual cameras on smartphones. In: Proceeding of the 11th Annual International Conference on Mobile Systems, Applications, and Services, pp. 13–26. ACM, New York (2013)
Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical world. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 316–324. ACM, New York (2011)
Zhang, P., Zhou, M., Fortino, G.: Security and trust issues in fog computing: a survey. Fut. Gener. Comput. Syst. 88, 16–27 (2018)
Zhang, Q., Wang, Y., Zhang, X., Liu, L., Wu, X., Shi, W., Zhong, H.: OpenVDAP: an open vehicular data analytics platform for CAVs. In: 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), pp. 1310–1320. IEEE, New York (2018)
Zhu, M., Gupta, S.: To prune, or not to prune: exploring the efficacy of pruning for model compression (2017). Preprint. arXiv:1710.01878
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Shi, W., Liu, L. (2021). Algorithm Deployment Optimization. In: Computing Systems for Autonomous Driving. Springer, Cham. https://doi.org/10.1007/978-3-030-81564-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-81564-6_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-81563-9
Online ISBN: 978-3-030-81564-6
eBook Packages: Computer ScienceComputer Science (R0)