Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Algorithm Deployment Optimization

  • Chapter
  • First Online:
Computing Systems for Autonomous Driving
  • 1277 Accesses

Abstract

With the burgeoning growth of the Internet of Everything (IoE), the amount of data generated by these edge devices has increased dramatically. Terabytes of sensor data could be generated per vehicle per day, which makes it impossible for uploading them into the cloud and process. On the other hand, with more and more computation resources deployed on the vehicle, lots of researches embrace the design which incorporate cloud and edge computing. However, the algorithm deployment of algorithms like DNNs still faces several challenges: one is the data volume, another is data privacy. What role should the edge play to support CAVs applications? In this chapter, we introduce two cloud-edge collaboration systems to support CAVs applications. One is CLONE, which is a collaborative learning setting on the edges (CLONE) which is able to mainly demonstrate the effectiveness of latency reduction and privacy-preserving. The other is pBEAM, which is a collaborative cloud-edge computation system for personalized driving behavior modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.: Tensorflow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI), vol. 16, pp. 265–283 (2016)

    Google Scholar 

  2. Alam, M.G.R., Hassan, M.M., Uddin, M.Z., Almogren, A., Fortino, G.: Autonomic computation of floading in mobile edge for IoT applications. Fut. Gener. Comput. Syst. 90, 149–157 (2019)

    Article  Google Scholar 

  3. Bao, L., Fan, L., Miao, Z.: Real-time simulation of electric vehicle battery charging systems. In: 2018 North American Power Symposium (NAPS), pp. 1–6. IEEE, New York (2018)

    Google Scholar 

  4. Bort, J.: The ‘Google Brain’ is a real thing but very few people have seen it. (2016). http://www.businessinsider.com/what-isgoogle-brain-2016-9

  5. Bowne, B.F., Baker, N.R., Marzinzik, D.L., Riley, M.E., Christopulos, N.U., Fields, B.M., Wilson, J.L., Wilkerson, B.T., Thurber, D.W., et al.: Methods to determine a vehicle insurance premium based on vehicle operation data collected via a mobile device (2013). US Patent App. 13/763,231

    Google Scholar 

  6. Cheng, K.W.E., Divakar, B., Wu, H., Ding, K., Ho, H.F.: Battery-management system (BMS) and SOC development for electrical vehicles. IEEE Trans. Veh. Technol. 60(1), 76–88 (2011)

    Article  Google Scholar 

  7. Claudio, S., Giancarlo, F.: A simulation-driven methodology for IoT data mining based on edge computing, in ACM Transactions on Internet Technology (TOIT) (2020)

    Google Scholar 

  8. Collaborative learning on the edges: A case study on connected vehicles. In: 2nd USENIX Workshop on Hot Topics in Edge Computing (HotEdge 19). USENIX Association, Renton, WA (2019). https://www.usenix.org/conference/hotedge19/presentation/lu

  9. dos Santos Lima, F.D., Amaral, G.M.R., de Moura Leite, L.G., Gomes, J.P.P., de Castro Machado, J.: Predicting failures in hard drives with LSTM networks. In: Proceedings of the 2017 Brazilian Conference on Intelligent Systems (BRACIS), pp. 222–227. IEEE, New York (2017)

    Google Scholar 

  10. Feng, Z., George, S., Harkes, J., Pillai, P., Klatzky, R., Satyanarayanan, M.: Edge-based discovery of training data for machine learning. In: 2018 IEEE/ACM Symposium on Edge Computing (SEC), pp. 145–158. IEEE, New York (2018)

    Google Scholar 

  11. Forecast, G.: Cisco visual networking index: Global mobile data traffic forecast update 2017–2022. Update 2017, 2022 (2019)

    Google Scholar 

  12. Fotouhi, A., Auger, D.J., Propp, K., Longo, S., Wild, M.: A review on electric vehicle battery modelling: From lithium-ion toward lithium–sulphur. Renew. Sustain. Energy Rev. 56, 1008–1021 (2016)

    Article  Google Scholar 

  13. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)

    Article  MathSciNet  Google Scholar 

  14. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610 (2005)

    Article  Google Scholar 

  15. Grulich, P.M., Nawab, F.: Collaborative edge and cloud neural networks for real-time video processing. Proceedings of the VLDB Endowment 11(12), 2046–2049 (2018)

    Article  Google Scholar 

  16. Gulli, A., Pal, S.: Deep Learning with Keras. Packt Publishing Ltd, Birmingham (2017)

    Google Scholar 

  17. He, L., Kim, E., Shin, K.G., Meng, G., He, T.: Battery state-of-health estimation for mobile devices. In: 2017 ACM/IEEE 8th International Conference on Cyber-Physical Systems (ICCPS), pp. 51–60. IEEE, New York (2017)

    Google Scholar 

  18. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  19. Hung, C.C., Ananthanarayanan, G., Bodik, P., Golubchik, L., Yu, M., Bahl, P., Philipose, M.: VideoEdge: processing camera streams using hierarchical clusters. In: 2018 IEEE/ACM Symposium on Edge Computing (SEC), pp. 115–131. IEEE, New York (2018)

    Google Scholar 

  20. Jang, S.Y., Lee, Y., Shin, B., Lee, D.: Application-aware IoT camera virtualization for video analytics edge computing. In: 2018 IEEE/ACM Symposium on Edge Computing (SEC), pp. 132–144. IEEE, New York (2018)

    Google Scholar 

  21. Jouppi, N.: Google supercharges machine learning tasks with TPU custom chip. (2016). https://cloud.google.com/blog/products/gcp/google-supercharges-machine-learning-tasks-with-custom-chip

  22. Kang, Y., Hauswald, J., Gao, C., Rovinski, A., Mudge, T., Mars, J., Tang, L.: Neurosurgeon: collaborative intelligence between the cloud and mobile edge. ACM Sigplan Not. 52(4), 615–629 (2017)

    Article  Google Scholar 

  23. Kaplan, S., Guvensan, M.A., Yavuz, A.G., Karalurt, Y.: Driver behavior analysis for safe driving: a survey. IEEE Trans. Intell. Transport. Syst. 16(6), 3017–3032 (2015)

    Article  Google Scholar 

  24. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.Y.: LightGBM: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems, pp. 3146–3154 (2017)

    Google Scholar 

  25. Kim, J.H.: Estimating classification error rate: repeated cross-validation, repeated hold-out and bootstrap. Comput. Stat. Data Anal. 53(11), 3735–3745 (2009)

    Article  MathSciNet  Google Scholar 

  26. Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Artificial Intelligence (IJCAI), vol. 14, pp. 1137–1145 (1995)

    Google Scholar 

  27. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency (2016). Preprint. arXiv:1610.05492

    Google Scholar 

  28. Lee, K., Flinn, J., Noble, B.D.: Gremlin: scheduling interactions in vehicular computing. In: Proceedings of the 2nd ACM/IEEE Symposium on Edge Computing, pp. 1–13 (2017)

    Google Scholar 

  29. Li, B., Wang, W., Jia, L., Wang, D., Kong, A.: Study on HIL system of electric vehicle controller based on NI. In: IOP Conference Series: Materials Science and Engineering, vol. 382, p. 052033. IOP Publishing, Bristol (2018)

    Google Scholar 

  30. Li, H.P., Li, Y.w.: The research of electric vehicle’s MCU system based on iso26262. In: 2017 2nd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), pp. 336–340. IEEE, New York (2017)

    Google Scholar 

  31. Liaw, A., Wiener, M., et al.: Classification and regression by randomForest. R news 2(3), 18–22 (2002)

    Google Scholar 

  32. Liu, L., Zhang, X., Qiao, M., Shi, W.: SafeShareRide: edge-based attack detection in ridesharing services. In: 2018 IEEE/ACM Symposium on Edge Computing (SEC), pp. 17–29 (2018). https://doi.org/10.1109/SEC.2018.00009

  33. Lovejoy, B.: Apple moves to third-generation Siri back-end, built on open-source Mesos platform. (2015). https://9to5mac.com/2015/04/27/siri-backend-mesos/

  34. Lu, S., Luo, B., Patel, T., Yao, Y., Tiwari, D., Shi, W.: Making disk failure predictions SMARTer! In: 18th USENIX Conference on File and Storage Technologies (FAST), pp. 151–167 (2020)

    Google Scholar 

  35. Lu, S., Yuan, X., Shi, W.: EdgeCompression: an integrated framework for compressive imaging processing on CAVs. In: Proceedings of the 5th ACM/IEEE Symposium on Edge Computing (SEC) (2020)

    Google Scholar 

  36. Ma, C., Dai, X., Zhu, J., Liu, N., Sun, H., Liu, M.: Drivingsense: dangerous driving behavior identification based on smartphone autocalibration. Mob. Inf. Syst. 2017 (2017). https://doi.org/10.1155/2017/9075653

  37. Ma, L., Yi, S., Li, Q.: Efficient service handoff across edge servers via docker container migration. In: Proceedings of the Second ACM/IEEE Symposium on Edge Computing, pp. 1–13 (2017)

    Google Scholar 

  38. Ma, Y., Zhang, K., Gu, J., Li, J., Lu, D.: Design of the control system for a four-wheel driven micro electric vehicle. In: 2009 IEEE Vehicle Power and Propulsion Conference, pp. 1813–1816. IEEE, New York (2009)

    Google Scholar 

  39. Mao, Y., Yi, S., Li, Q., Feng, J., Xu, F., Zhong, S.: Learning from differentially private neural activations with edge computing. In: 2018 IEEE/ACM Symposium on Edge Computing (SEC), pp. 90–102. IEEE, New York (2018)

    Google Scholar 

  40. Mearian, B.L.: Self-driving cars could create 1GB of data a second (2013). https://www.computerworld.com/article/2484219/emerging-technology/self-driving-cars-could-create-1gb-of-data-a-second.html

  41. Mogren, O.: C-RNN-GAN: continuous recurrent neural networks with adversarial training (2016). Preprint. arXiv:1611.09904

    Google Scholar 

  42. Naic: Usage-based insurance and telematics, https://www.naic.org (2018). https://www.naic.org/cipr_topics/topic_usage_based_insurance.htm

  43. Organization, W.H.: Global Status Report on Road Safety 2015. World Health Organization (2015)

    Google Scholar 

  44. Park, D., Kim, S., An, Y., Jung, J.Y.: Lired: A light-weight real-time fault detection system for edge computing using LSTM recurrent neural networks. Sensors 18(7), 2110 (2018)

    Article  Google Scholar 

  45. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  46. Peled, E., Golodnitsky, D., Mazor, H., Goor, M., Avshalomov, S.: Parameter analysis of a practical lithium-and sodium-air electric vehicle battery. J. Power Sources 196(16), 6835–6840 (2011)

    Article  Google Scholar 

  47. Ran, L., Junfeng, W., Haiying, W., Gechen, L.: Design method of can bus network communication structure for electric vehicle. In: International Forum on Strategic Technology 2010, pp. 326–329. IEEE, New York (2010)

    Google Scholar 

  48. Regulation, P.: General data protection regulation. Off. J. Eur. Union 59, 1–88 (2016)

    Google Scholar 

  49. Rodriguez, J.D., Perez, A., Lozano, J.A.: Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans. Patt. Anal. Mach. Intell. 32(3), 569–575 (2010)

    Article  Google Scholar 

  50. Rossi, T.: Autonomous and adas test cars produce over 11 tb of data per day (article) (October 10, 2018). https://www.tuxera.com/blog/autonomous-and-adas-test-cars-produce-over-11-tb-of-data-per-day/

  51. Sarrafan, K., Muttaqi, K.M., Sutanto, D.: Real-time state-of-charge tracking system using mixed estimation algorithm for electric vehicle battery system. In: 2018 IEEE Industry Applications Society Annual Meeting (IAS), pp. 1–8. IEEE, New York (2018)

    Google Scholar 

  52. Satyanarayanan, M.: The emergence of edge computing. Computer 50(1), 30–39 (2017). https://doi.org/10.1109/MC.2017.9

    Article  Google Scholar 

  53. Savaglio, C., Gerace, P., Di Fatta, G., Fortino, G.: Data mining at the IoT edge. In: 2019 28th International Conference on Computer Communication and Networks (ICCCN), pp. 1–6. IEEE, New York (2019)

    Google Scholar 

  54. SecurityInfoWatch: Data generated by new surveillance cameras to increase exponentially in the coming years (January 20, 2016). https://www.securityinfowatch.com/video-surveillance/news/12160483

  55. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)

    Article  Google Scholar 

  56. Ulm, G., Gustavsson, E., Jirstrand, M.: OODIDA: on-board/off-board distributed data analytics for connected vehicles (2019). Preprint. arXiv:1902.00319

    Google Scholar 

  57. Vulimiri, A., Curino, C., Godfrey, P.B., Jungblut, T., Karanasos, K., Padhye, J., Varghese, G.: Wanalytics: geo-distributed analytics for a data intensive world. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1087–1092. ACM, New York (2015)

    Google Scholar 

  58. Wang, Y., Liu, S., Wu, X., Shi, W.: Cavbench: a benchmark suite for connected and autonomous vehicles. In: 2018 IEEE/ACM Symposium on Edge Computing (SEC), pp. 30–42. IEEE, New York (2018)

    Google Scholar 

  59. Xing, Y., Ma, E.W., Tsui, K.L., Pecht, M.: Battery management systems in electric and hybrid vehicles. Energies 4(11), 1840–1857 (2011)

    Article  Google Scholar 

  60. Yan, X.W., Guo, Y.W., Cui, Y., Wang, Y.W., Deng, H.R.: Electric vehicle battery SOC estimation based on GNL model adaptive Kalman filter. J. Phys. Conf. Ser. 1087, 052027. IOP Publishing (2018)

    Google Scholar 

  61. Ye, J., Chow, J.H., Chen, J., Zheng, Z.: Stochastic gradient boosted distributed decision trees. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 2061–2064. ACM, New York (2009)

    Google Scholar 

  62. Yi, S., Hao, Z., Zhang, Q., Zhang, Q., Shi, W., Li, Q.: LAVEA: latency-aware video analytics on edge computing platform. In: Proceedings of the 2nd ACM/IEEE Symposium on Edge Computing, pp. 1–13 (2017)

    Google Scholar 

  63. You, C.W., Lane, N.D., Chen, F., Wang, R., Chen, Z., Bao, T.J., Montes-de Oca, M., Cheng, Y., Lin, M., Torresani, L., et al.: Carsafe app: alerting drowsy and distracted drivers using dual cameras on smartphones. In: Proceeding of the 11th Annual International Conference on Mobile Systems, Applications, and Services, pp. 13–26. ACM, New York (2013)

    Google Scholar 

  64. Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical world. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 316–324. ACM, New York (2011)

    Google Scholar 

  65. Zhang, P., Zhou, M., Fortino, G.: Security and trust issues in fog computing: a survey. Fut. Gener. Comput. Syst. 88, 16–27 (2018)

    Article  Google Scholar 

  66. Zhang, Q., Wang, Y., Zhang, X., Liu, L., Wu, X., Shi, W., Zhong, H.: OpenVDAP: an open vehicular data analytics platform for CAVs. In: 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), pp. 1310–1320. IEEE, New York (2018)

    Google Scholar 

  67. Zhu, M., Gupta, S.: To prune, or not to prune: exploring the efficacy of pruning for model compression (2017). Preprint. arXiv:1710.01878

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shi, W., Liu, L. (2021). Algorithm Deployment Optimization. In: Computing Systems for Autonomous Driving. Springer, Cham. https://doi.org/10.1007/978-3-030-81564-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81564-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81563-9

  • Online ISBN: 978-3-030-81564-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics