Abstract
Modern key exchange protocols are usually based on the Diffie–Hellman (DH) primitive. The beauty of this primitive, among other things, is its potential reusage of key shares: DH shares can be either used a single time or in multiple runs. Since DH-based protocols are insecure against quantum adversaries, alternative solutions have to be found when moving to the post-quantum setting. However, most post-quantum candidates, including schemes based on lattices and even supersingular isogeny DH, are not known to be secure under key reuse. In particular, this means that they cannot be necessarily deployed as an immediate DH substitute in protocols.
In this paper, we introduce the notion of a split key encapsulation mechanism (split KEM) to translate the desired key-reusability of a DH-based protocol to a KEM-based flow. We provide the relevant security notions of split KEMs and show how the formalism lends itself to lifting Signal’s \(\mathsf {X3DH}\) handshake to the post-quantum KEM setting without additional message flows.
Although the proposed framework conceptually solves the raised issues, instantiating it securely from post-quantum assumptions proved to be non-trivial. We give passively secure instantiations from \(\mathsf {(R)LWE}\), yet overcoming the above-mentioned insecurities under key reuse in the presence of active adversaries remains an open problem. Approaching one-sided key reuse, we provide a split KEM instantiation that allows such reuse based on the KEM introduced by Kiltz (PKC 2007), which may serve as a post-quantum blueprint if the underlying hardness assumption (gap hashed Diffie–Hellman) holds for the commutative group action of CSIDH (Asiacrypt 2018).
The intention of this paper hence is to raise awareness of the challenges arising when moving to KEM-based key exchange protocols with key-reusability, and to propose split KEMs as a specific target for instantiation in future research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that it is in general not possible for Bob to precompute and store ciphertext(s) on the server alongside his public keys to avoid the additional message flow since Bob may not know in advance which user wishes to establish a secure chat with him.
- 2.
Note that the symmetric split KEM setting implies key reuse, obsoleting \(\mathsf {l}\mathsf {r}= \mathsf {n}\mathsf {n}\). We further consider the notions \(\mathsf {l}\mathsf {r}\in \{\mathsf {s}\mathsf {n},\mathsf {m}\mathsf {n}, \mathsf {s}\mathsf {m}, \mathsf {n}\mathsf {m}\} \) to be artificial as these notions encode that only some parties reuse keys across roles while other do not.
- 3.
References
Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 143–158. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9_12
Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: security notions, proofs, and modularization for the signal protocol. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 129–158. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_5
Azarderakhsh, R., Jao, D., Leonardi, C.: Post-quantum static-static key agreement using multiple protocol instances. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 45–63. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-9_3
Basso, A., Kutas, P., Merz, S.-P., Petit, C., Weitkämper, C.: On adaptive attacks against Jao-Urbanik’s isogeny-based protocol. In: Nitaj, A., Youssef, A. (eds.) AFRICACRYPT 2020. LNCS, vol. 12174, pp. 195–213. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51938-4_10
Bauer, A., Gilbert, H., Renault, G., Rossi, M.: Assessment of the key-reuse resilience of NewHope. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 272–292. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_14
Bergsma, F., Dowling, B., Kohlar, F., Schwenk, J., Stebila, D.: Multi-ciphersuite security of the Secure Shell (SSH) protocol. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp. 369–381. ACM Press, November 2014
Boneh, D., et al.: Multiparty non-interactive key exchange and more from isogenies on elliptic curves. J. Math. Cryptol. 14(1), 5–14 (2020). https://www.degruyter.com/view/journals/jmc/14/1/article-p5.xml
Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 493–522. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_17
Bos, J.W., et al.: Frodo: take off the ring! Practical, quantum-secure key exchange from LWE. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 1006–1018. ACM Press, October 2016
Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for the TLS protocol from the ring learning with errors problem. In: 2015 IEEE Symposium on Security and Privacy, pp. 553–570. IEEE Computer Society Press, May 2015
Brendel, J., Fischlin, M., Günther, F., Janson, C.: PRF-ODH: relations, instantiations, and impossibility results. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 651–681. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_22
Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_15
Castryck, W., Sotáková, J., Vercauteren, F.: Breaking the decisional Diffie-Hellman problem for class group actions using genus theory. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 92–120. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_4
Cohn-Gordon, K., Cremers, C.J.F., Dowling, B., Garratt, L., Stebila, D.: A formal security analysis of the signal messaging protocol. In: IEEE European Symposium on Security and Privacy, EuroS&P 2017, pp. 451–466 (2017)
Cohn-Gordon, K., Cremers, C.J.F., Dowling, B., Garratt, L., Stebila, D.: A formal security analysis of key establishment in the Signal messaging protocol. J. Cryptol. 33, 1914–1983 (2020)
Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2004)
Cremers, C., Feltz, M.: Beyond eCK: perfect forward secrecy under actor compromise and ephemeral-key reveal. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 734–751. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33167-1_42
Crockett, E., Paquin, C., Stebila, D.: Prototyping post-quantum and hybrid key exchange and authentication in TLS and SSH. In: NIST 2nd Post-Quantum Cryptography Standardization Conference 2019, August 2019
David Jao, R.A., et al.: Supersingular isogeny key encapsulation, April 2019. https://sike.org/
Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246 (Proposed Standard), August 2008. https://www.rfc-editor.org/rfc/rfc5246.txt
Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)
Ding, J., Alsayigh, S., Saraswathy, R.V., Fluhrer, S., Lin, X.: Leakage of signal function with reused keys in RLWE key exchange. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–6 (2017)
Ding, J., Branco, P., Schmitt, K.: Key exchange and authenticated key exchange with reusable keys based on RLWE assumption. Cryptology ePrint Archive, Report 2019/665 (2019). https://eprint.iacr.org/2019/665
Ding, J., Cheng, C., Qin, Y.: A simple key reuse attack on LWE and ring LWE encryption schemes as key encapsulation mechanisms (KEMs). Cryptology ePrint Archive, Report 2019/271 (2019). https://eprint.iacr.org/2019/271
Ding, J., Deaton, J., Schmidt, K., Vishakha, Zhang, Z.: A simple and practical key reuse attack on NTRU cryptosystem. Cryptology ePrint Archive, Report 2019/1022 (2019). https://eprint.iacr.org/2019/1022
Ding, J., Fluhrer, S., Rv, S.: Complete attack on RLWE key exchange with reused keys, without signal leakage. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 467–486. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3_27
Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme based on the learning with errors problem. Cryptology ePrint Archive, Report 2012/688 (2012). http://eprint.iacr.org/2012/688
Dobson, S., Galbraith, S.D., LeGrow, J., Ti, Y.B., Zobernig, L.: An adaptive attack on 2-SIDH. Cryptology ePrint Archive, Report 2019/890 (2019). https://eprint.iacr.org/2019/890
Dobson, S., Li, T., Zobernig, L.: A note on a static SIDH protocol. Cryptology ePrint Archive, Report 2019/1244 (2019). https://eprint.iacr.org/2019/1244
Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the TLS 1.3 handshake protocol candidates. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 1197–1210. ACM Press, October 2015
Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the TLS 1.3 handshake protocol. J. Cryptol. (2020)
Drucker, N., Gueron, S.: Continuous key agreement with reduced bandwidth. In: Dolev, S., Hendler, D., Lodha, S., Yung, M. (eds.) CSCML 2019. LNCS, vol. 11527, pp. 33–46. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20951-3_3
Duits, I.: The post-quantum signal protocol: secure chat in a quantum world. Master’s thesis, University of Twente, February 2019. http://essay.utwente.nl/77239/
Fischlin, M., Günther, F.: Multi-stage key exchange and the case of Google’s QUIC protocol. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp. 1193–1204. ACM Press, November 2014
Fluhrer, S.: Cryptanalysis of ring-LWE based key exchange with key share reuse. Cryptology ePrint Archive, Report 2016/085 (2016). http://eprint.iacr.org/2016/085
Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_34
Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. J. Cryptol. 26(1), 80–101 (2013)
Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingular isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_3
Gao, X., Ding, J., Li, L., Liu, J.: Practical randomized RLWE-based key exchange against signal leakage attack. IEEE Trans. Comput. 67(11), 1584–1593 (2018)
Greuet, A., Montoya, S., Renault, G.: Attack on LAC key exchange in misuse situation. Cryptology ePrint Archive, Report 2020/063 (2020). https://eprint.iacr.org/2020/063
Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12
Hülsing, A., Ning, K.C., Schwabe, P., Weber, F., Zimmermann, P.R.: Post-quantum wireguard. Cryptology ePrint Archive, Report 2020/379 (2020). https://eprint.iacr.org/2020/379
Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 273–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_17
Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_2
Katsumata, S., Kwiatkowski, K., Pintore, F., Prest, T.: Scalable ciphertext compression techniques for post-quantum KEMs and their applications. In: ASIACRYPT 2020 (2020, to appear). Available as Cryptology ePrint Archive, Report 2020/1107. https://eprint.iacr.org/2020/1107
Kawashima, T., Takashima, K., Aikawa, Y., Takagi, T.: An efficient authenticated key exchange from random self-reducibility on CSIDH. Cryptology ePrint Archive, Report 2020/1178 (2020). https://eprint.iacr.org/2020/1178
Kayacan, S.: A note on the static-static key agreement protocol from supersingular isogenies. Cryptology ePrint Archive, Report 2019/815 (2019). https://eprint.iacr.org/2019/815
Kiltz, E.: Chosen-ciphertext secure key-encapsulation based on gap hashed Diffie-Hellman. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 282–297. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_19
de Kock, B., Gjøsteen, K., Veroni, M.: Practical isogeny-based key-exchange with optimal tightness. In: SAC 2020 (2020, to appear). Available as Cryptology ePrint Archive, Report 2020/1165. https://eprint.iacr.org/2020/1165
Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_33
Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: a systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 429–448. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_24
Krawczyk, H., Wee, H.: The OPTLS protocol and TLS 1.3. In: 2016 IEEE European Symposium on Security and Privacy, EuroS&P 2016, pp. 81–96. IEEE, Saarbrücken, 21–24 March 2016
Kwiatkowski, K., Valenta, L.: The TLS Post-Quantum Experiment. The Cloudflare Blog, October 2019. https://blog.cloudflare.com/the-tls-post-quantum-experiment/
LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-5_1
Langley, A.: CECPQ1 results. Imperial Violet, Blog, November 2016. https://www.imperialviolet.org/2016/11/28/cecpq1.html
Langley, A.: CECPQ2. Imperial Violet, Blog, December 2018. https://www.imperialviolet.org/2018/12/12/cecpq2.html
Langley, A., Chang, W.T.: QUIC Crypto, December 2016. https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/. Revision 06 Dec 2016
Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_21
Liu, C., Zheng, Z., Zou, G.: Key reuse attack on NewHope key exchange protocol. In: Lee, K. (ed.) ICISC 2018. LNCS, vol. 11396, pp. 163–176. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12146-4_11
Marlinspike, M., Perrin, T.: The X3DH key agreement protocol, November 2016. https://signal.org/docs/specifications/x3dh/
National Institute of Standards and Technology (NIST): Post-quantum cryptography, 19 August 2015. https://csrc.nist.gov/projects/post-quantum-cryptography
Okada, S., Wang, Y., Takagi, T.: Improving key mismatch attack on NewHope with fewer queries. In: Liu, J.K., Cui, H. (eds.) ACISP 2020. LNCS, vol. 12248, pp. 505–524. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55304-3_26
Okamoto, T., Pointcheval, D.: The gap-problems: a new class of problems for the security of cryptographic schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-2_8
Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11659-4_12
Peikert, C.: He Gives C-Sieves on the CSIDH. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 463–492. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_16
Perrin, T.: The Noise protocol framework. https://noiseprotocol.org/
Qin, Y., Cheng, C., Ding, J.: A complete and optimized key mismatch attack on NIST candidate NewHope. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019, Part II. LNCS, vol. 11736, pp. 504–520. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29962-0_24
QUIC, a multiplexed stream transport over UDP. https://www.chromium.org/quic
Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446 (Proposed Standard), August 2018. https://www.rfc-editor.org/rfc/rfc8446.txt
Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without handshake signatures. Cryptology ePrint Archive, Report 2020/534 (2020). https://eprint.iacr.org/2020/534
Shoup, V.: A Proposal for an ISO Standard for Public Key Encryption (version 2.1), December 2001. https://www.shoup.net/papers/iso-2_1.pdf
Signal protocol: Technical documentation. https://whispersystems.org/docs/
Stebila, D., Mosca, M.: Post-quantum key exchange for the internet and the open quantum safe project. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 14–37. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5_2
Urbanik, D., Jao, D.: New techniques for SIDH-based NIKE. J. Math. Cryptol. 14(1), 120–128 (2020). https://www.degruyter.com/view/journals/jmc/14/1/article-p120.xml
Ustaoglu, B.: Obtaining a secure and efficient key agreement protocol from (H)MQV and NAXOS. Des. Codes Crypt. 46(3), 329–342 (2008)
Xue, H., Lu, X., Li, B., Liang, B., He, J.: Understanding and constructing AKE via double-key key encapsulation mechanism. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 158–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_6
Yao, A.C.C., Zhao, Y.: OAKE: a new family of implicitly authenticated Diffie-Hellman protocols. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 1113–1128. ACM Press, November 2013
Ylonen, T., Lonvick, C.: The Secure Shell (SSH) Transport Layer Protocol. RFC 4253 (Proposed Standard), January 2005. https://www.rfc-editor.org/rfc/rfc4253.txt
Acknowledgements
We thank Håkon Jacobsen for helpful discussions in the early phase of this work.
Marc Fischlin and Christian Janson have been (partially) funded by the Deutsche Forschungsgemeinschaft (DFG) – SFB 1119 – 236615297. Felix Günther has been supported in part by Research Fellowship grant GU 1859/1-1 of the German Research Foundation (DFG) and National Science Foundation (NSF) grants CNS-1526801 and CNS-1717640. Douglas Stebila has been supported in part by Natural Sciences and Engineering Research Council (NSERC) of Canada Discovery grant RGPIN-2016-05146 and a NSERC Discovery Accelerator Supplement.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Brendel, J., Fischlin, M., Günther, F., Janson, C., Stebila, D. (2021). Towards Post-Quantum Security for Signal’s X3DH Handshake. In: Dunkelman, O., Jacobson, Jr., M.J., O'Flynn, C. (eds) Selected Areas in Cryptography. SAC 2020. Lecture Notes in Computer Science(), vol 12804. Springer, Cham. https://doi.org/10.1007/978-3-030-81652-0_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-81652-0_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-81651-3
Online ISBN: 978-3-030-81652-0
eBook Packages: Computer ScienceComputer Science (R0)