Abstract
Sign language is an important means of social communication for hearing-impaired people, and most developed countries have established their own hand language banks. Under the guidance of the National Language Commission, China has created a national sign language corpus, which is mainly composed of video. For the database, one of the most important work is to establish the index of retrieval. For sign language videos, the most important index is the hand shape displayed in the video key frame. In this paper, a simple and efficient key frame extraction algorithm is proposed based on the video library with good consistency, namely the sign language video library, to create a fast and efficient index. At the same time, it can be used as a reference for similar video libraries.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cao, J., et al.: A key frame selection algorithm based on sliding window and image features. In: 2016 International Conference on Parallel and Distributed Systems (ICPADS), pp. 956–962. IEEE, Wuhan, China (2016)
Chen, L., Wang, Y.: Automatic key frame extraction in continuous videos from construction monitoring by using color, texture, and gradient features. Autom. Constr. 81, 355–368 (2017)
Ioannidis, A., Chasanis, V., Likas, A.: Weighted multiview key-frame extraction. Pattern Recogn. Lett. 72, 52–61 (2016)
Devanne, M., et al.: 3-D human action recognition by shape analysis of motion trajectories on Riemannian manifold. IEEE Trans. Cybern. 45(7), 1340–1352 (2015)
Guo, X.P., Huang, Y.Y., Hu, Z.J.: Research on recognition algorithm of continuous sign language statement based on Key frame. Comput. Sci. 44(2), 188–193 (2017). (in Chinese)
Nasreen, A., et al.: Key frame extraction and foreground modeling using K-means clustering. In: 2015 7th International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN), vol. 34, pp. 141–145. IEEE, USA, (2015)
Gharbi, H., et al.: Key frames extraction using graph modularity clustering for efficient video summarization. In: IEEE International Conference on Acoustics, pp. 1502–1506. IEEE, USA (2017)
Rubner, Y.I., Tomasi, C., Guibas, L.J.: Mover’s distance as a metric for image retrieval. Int. J. Comput. Vision 40(2), 99–121 (2000)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Image Understand. 18(6), 679–698 (1986)
Wang, X., Liu, X., Guan, Y.: Image edge detection algorithm based on improved Canny operator. Comput. Eng. 34(14), 196–198 (2012). (in Chinese)
Bay, H., Tuytelaars, T., Cool, L.V.: SURF: speeded up robust features. In: Proceedings of the 9th European Conference on Computer Vision, pp. 404–417. Springer-Verlag, Berlin, Germany (2006)
Acknowledgement
This work was supported by The Ministry of Education has approved a key project in the 13th Five-Year Plan for Education Science in 2017: “Research on Higher Education Teaching Support for the Disabled in the Context of Big Data”. (No. DIA170367), The Major Programs of Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 19KJA310002.) and The Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 17KJD520006).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Zhu, Z., Zhang, S., Zhou, Y. (2021). A Simple and Efficient Key Frame Recognition Algorithm for Sign Language Video. In: Fu, W., Xu, Y., Wang, SH., Zhang, Y. (eds) Multimedia Technology and Enhanced Learning. ICMTEL 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 388. Springer, Cham. https://doi.org/10.1007/978-3-030-82565-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-82565-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-82564-5
Online ISBN: 978-3-030-82565-2
eBook Packages: Computer ScienceComputer Science (R0)