Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Deep Bag-of-Sub-Emotions for Depression Detection in Social Media

  • Conference paper
  • First Online:
Text, Speech, and Dialogue (TSD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12848))

Included in the following conference series:

Abstract

This paper presents DeepBoSE, a novel deep learning model for depression detection in social media. The model is formulated such that it internally computes a differentiable Bag-of-Features (BoF) representation that incorporates emotional information. This is achieved by a reinterpretation of classical weighting schemes like tf-idf into probabilistic deep learning operations. An advantage of the proposed method is that it can be trained under the transfer learning paradigm, which is useful to enhance conventional BoF models that cannot be directly integrated into deep learning architectures. Experiments on the eRisk17 and eRisk18 datasets for the depression detection task show that DeepBoSE outperforms conventional BoF representations and is competitive with the state of the art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aragón, M.E., López-Monroy, A.P., González-Gurrola, L.C., Gómez, M.M.: Detecting depression in social media using fine-grained emotions. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) (2019)

    Google Scholar 

  2. Bromet, R.K.E., Jonge, P., Shahly, V., Wilcox, M.: The burden of depressive illness. In: Public Health Perspectives on Depressive Disorders (2017)

    Google Scholar 

  3. Cong, Q., Feng, Z., Li, F., Xiang, Y., Rao, G., Tao, C.: XA-BiLSTM: a deep learning approach for depression detection in imbalanced data. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1624–1627. IEEE (2018)

    Google Scholar 

  4. Coppersmith, G., Ngo, K., Leary, R., Wood, A.: Exploratory analysis of social media prior to a suicide attempt. In: Proceedings of the Third Workshop on Computational Linguistics and Clinical Psychology, pp. 106–117 (2016)

    Google Scholar 

  5. De Choudhury, M., Counts, S., Horvitz, E.J., Hoff, A.: Characterizing and predicting postpartum depression from shared Facebook data. In: Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work and Social Computing, pp. 626–638 (2014)

    Google Scholar 

  6. De Choudhury, M., Kiciman, E., Dredze, M., Coppersmith, G., Kumar, M.: Discovering shifts to suicidal ideation from mental health content in social media. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 2098–2110 (2016)

    Google Scholar 

  7. Eichstaedt, J.C., et al.: Facebook language predicts depression in medical records. Proc. Nat. Acad. Sci. 115(44), 11203–11208 (2018)

    Article  Google Scholar 

  8. Gkotsis, G., et al.: Characterisation of mental health conditions in social media using informed deep learning. Sci. Rep. 7, 45141 (2017)

    Article  Google Scholar 

  9. Guntuku, S.C., Yaden, D.B., Kern, M.L., Ungar, L.H., Eichstaedt, J.C.: Detecting depression and mental illness on social media: an integrative review. Curr. Opinion Behav. Sci. 18, 43–49 (2017)

    Article  Google Scholar 

  10. Lara, J.S., González, F.A.: Dissimilarity mixture autoencoder for deep clustering. arXiv:2006.08177 (2020)

  11. Li, J., Chen, X., Hovy, E.H., Jurafsky, D.: Visualizing and understanding neural models in NLP. In: HLT-NAACL (2016)

    Google Scholar 

  12. Losada, D.E., Crestani, F., Parapar, J.: eRISK 2017: CLEF lab on early risk prediction on the internet: experimental foundations. In: Jones, G.J.F., et al. (eds.) CLEF 2017. LNCS, vol. 10456, pp. 346–360. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65813-1_30

    Chapter  Google Scholar 

  13. Losada, D.E., Crestani, F., Parapar, J.: Overview of eRisk 2018: early risk prediction on the internet (extended lab overview). In: Proceedings of the 9th International Conference of the CLEF Association. CLEF 2018, Avignon, France (2018)

    Google Scholar 

  14. Mohammad, S.M., Turney, P.D.: Crowdsourcing a word-emotion association lexicon. Comput. Intell. 29(3), 436–465 (2012)

    Article  MathSciNet  Google Scholar 

  15. Orabi, A.H., Buddhitha, P., Orabi, M.H., Inkpen, D.: Deep learning for depression detection of twitter users. In: Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic, pp. 88–97 (2018)

    Google Scholar 

  16. Reece, A.G., Reagan, A.J., Lix, K.L., Dodds, P.S., Danforth, C.M., Langer, E.J.: Forecasting the onset and course of mental illness with twitter data. Sci. Rep. 7(1), 1–11 (2017)

    Article  Google Scholar 

  17. Renteria-Rodriguez, M.E.: Salud mental en mexico. NOTA-INCyTU NÚMERO 007 (2018)

    Google Scholar 

  18. Sawhney, R., Manchanda, P., Singh, R., Aggarwal, S.: A computational approach to feature extraction for identification of suicidal ideation in tweets. In: Proceedings of ACL 2018, Student Research Workshop, pp. 91–98 (2018)

    Google Scholar 

  19. Tausczik, Y.R., Pennebaker, J.W.: The psychological meaning of words: LIWC and computerized text analysis methods. J. Lang. Soc. Psychol. 29(1), 24–54 (2010)

    Article  Google Scholar 

  20. Thavikulwat, P.: Affinity propagation: a clustering algorithm for computer-assisted business simulation and experimental exercises. In: Developments in Business Simulation and Experiential Learning (2008)

    Google Scholar 

  21. Xue, Y., Li, Q., Jin, L., Feng, L., Clifton, D.A., Clifford, G.D.: Detecting adolescent psychological pressures from micro-blog. In: Zhang, Y., Yao, G., He, J., Wang, L., Smalheiser, N.R., Yin, X. (eds.) HIS 2014. LNCS, vol. 8423, pp. 83–94. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06269-3_10

    Chapter  Google Scholar 

  22. Yazdavar, A.H., et al.: Semi-supervised approach to monitoring clinical depressive symptoms in social media. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017, pp. 1191–1198 (2017)

    Google Scholar 

Download references

Acknowledgments

This research was supported by CONACyT-Mexico (Scholarship 654803 and Projects: A1-S-26314 and CB-2015-01-257383).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan S. Lara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lara, J.S., Aragón, M.E., González, F.A., Montes-y-Gómez, M. (2021). Deep Bag-of-Sub-Emotions for Depression Detection in Social Media. In: Ekštein, K., Pártl, F., Konopík, M. (eds) Text, Speech, and Dialogue. TSD 2021. Lecture Notes in Computer Science(), vol 12848. Springer, Cham. https://doi.org/10.1007/978-3-030-83527-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83527-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83526-2

  • Online ISBN: 978-3-030-83527-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics