Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Inverse QSAR Method Based on Decision Tree and Integer Programming

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2021)

Abstract

Recently a novel framework has been proposed for designing the molecular structure of chemical compounds using both artificial neural networks (ANNs) and mixed integer linear programming (MILP). In the framework, we first define a feature vector f(\({\mathbb{C}}\)) of a chemical graph \({\mathbb{C}}\) and construct an ANN that maps x = f(\({\mathbb{C}}\)) to a predicted value η(x) of a chemical property π to \({\mathbb{C}}\). After this, we formulate an MILP that simulates the computation process of f(\({\mathbb{C}}\)) from \({\mathbb{C}}\) and that of η(x) from x. Given a target value y of the chemical property π, we infer a chemical graph \({\mathbb{C}}\) such that η(f(\({\mathbb{C}}\))) = y by solving the MILP. In this paper, in pursuit of alternative learning models, we design an original decision tree that is based on a set of separating hyperplanes in the feature space which is then used to construct a prediction function η instead of ANNs. For this, we derive an MILP formulation that simulates the computation process of the proposed decision tree. The results of computational experiments suggest our method can infer chemical graphs with around up to 50 non-hydrogen atoms and that the prediction function based on a decision tree outperforms that with ANNs for several chemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lo, Y.-C., Rensi, S.E., Torng, W., Altman, R.B.: Machine learning in chemoinformatics and drug discovery. Drug Discov. Today 23, 1538–1546 (2018)

    Article  Google Scholar 

  2. Tetko, I.V., Engkvist, O.: From Big Data to Artificial Intelligence: chemoinformatics meets new challenges. J. Cheminformat. 12, 74 (2020)

    Article  Google Scholar 

  3. Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in QSAR studies: merits and drawbacks. Drug Discov. Today 23(10), 1784–1790 (2018)

    Article  Google Scholar 

  4. Miyao, T., Kaneko, H., Funatsu, K.: Inverse QSPR/QSAR analysis for chemical structure generation (from y to x). J. Chem. Inf. Model. 56, 286–299 (2016)

    Article  Google Scholar 

  5. Ikebata, H., Hongo, K., Isomura, T., Maezono, R., Yoshida, R.: Bayesian molecular design with a chemical language model. J. Comput. Aided Mol. Des. 31(4), 379–391 (2017)

    Article  Google Scholar 

  6. Rupakheti, C., Virshup, A., Yang, W., Beratan, D.N.: Strategy to discover diverse optimal molecules in the small molecule universe. J. Chem. Inf. Model. 55, 529–537 (2015)

    Article  Google Scholar 

  7. Bohacek, R.S., McMartin, C., Guida, W.C.: The art and practice of structure-based drug design: a molecular modeling perspective. Med. Res. Rev. 16, 3–50 (1996)

    Article  Google Scholar 

  8. Akutsu, T., Fukagawa, D., Jansson, J., Sadakane, K.: Inferring a graph from path frequency. Discrete Appl. Math. 160(10–11), 1416–1428 (2012)

    Article  MathSciNet  Google Scholar 

  9. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks (2016). arXiv:1609.02907

  10. Gomez-Bombarelli, R., et al.: Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4, 268–276 (2018)

    Article  Google Scholar 

  11. Segler, M.H.S., Kogej, T., Tyrchan, C., Waller, M.P.: Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent. Sci. 4, 120–131 (2017)

    Article  Google Scholar 

  12. Yang, X., Zhang, J., Yoshizoe, K., Terayama, K., Tsuda, K.: ChemTS: an efficient python library for de novo molecular generation. STAM 18, 972–976 (2017)

    Google Scholar 

  13. Kusner, M.J., Paige, B., Hernandez-Lobato, J.M.: Grammar variational autoencoder. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1945–1954 (2017)

    Google Scholar 

  14. De Cao, N., Kipf, T.: MolGAN: an implicit generative model for small molecular graphs (2018). arXiv:1805.11973

  15. Madhawa, K., Ishiguro, K., Nakago, K., Abe, M.: GraphNVP: an invertible flow model for generating molecular graphs (2019). arXiv:1905.11600

  16. Shi, C., Xu, M., Zhu, Z., Zhang, W., Zhang, M., Tang, J.: GraphAF: a flow-based autoregressive model for molecular graph generation (2020). arXiv:2001.09382

  17. Akutsu, T., Nagamochi, H.: A mixed integer linear programming formulation to artificial neural networks. In: Proceedings of the 2nd International Conference on Information Science and Systems, pp. 215–220 (2019)

    Google Scholar 

  18. Pereira, G.: In: Schweiger, G. (ed.) Poverty, Inequality and the Critical Theory of Recognition. PP, vol. 3, pp. 83–106. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45795-2_4

    Chapter  Google Scholar 

  19. Zhang, F., Zhu, J., Chiewvanichakorn, R., Shurbevski, A., Nagamochi, H., Akutsu, T.: A new integer linear programming formulation to the inverse QSAR/QSPR for acyclic chemical compounds using skeleton trees. In: Fujita, H., Fournier-Viger, P., Ali, M., Sasaki, J. (eds.) IEA/AIE 2020. LNCS (LNAI), vol. 12144, pp. 433–444. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55789-8_38

    Chapter  Google Scholar 

  20. Azam, N.A., et al.: A novel method for inference of acyclic chemical compounds with bounded branch-height based on artificial neural networks and integer programming. To appear in Algorithms for Molecular Biology (2021)

    Google Scholar 

  21. Ito, R., Azam, N.A., Wang, C., Shurbevski, A., Nagamochi, H., Akutsu, T.: A novel method for the inverse QSAR/QSPR to monocyclic chemical compounds based on artificial neural networks and integer programming. In: Proceedings of the BIOCOMP2020, Las Vegas, Nevada, USA, 27–30 July (2020)

    Google Scholar 

  22. Zhu, J., Wang, C., Shurbevski, A., Nagamochi, H., Akutsu, T.: A novel method for inference of chemical compounds of cycle index two with desired properties based on artificial neural networks and integer programming. Algorithms 13(5), 124 (2020)

    Article  Google Scholar 

  23. Akutsu, T., Nagamochi, H.: A novel method for inference of chemical compounds with prescribed topological substructures based on integer programming (2020). arXiv:2010.09203

  24. Zhu, J., et al.: A novel method for inferring of chemical compounds with prescribed topological substructures based on integer programming (submitted)

    Google Scholar 

  25. Shi, Y., et al.: An inverse QSAR method based on a two-layered model and integer programming. Int. J. Mol. Sci. 22, 2847 (2021)

    Article  Google Scholar 

  26. Annotations from HSDB (on pubchem): https://pubchem.ncbi.nlm.nih.gov/

  27. QM9 @ MoleculeNet: http://moleculenet.ai

  28. Bicerano, J.: Prediction of Polymer Properties. 3rd Edn, Revised and Expanded. CRC Press, Boca Raton (2002)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveed Ahmed Azam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tanaka, K. et al. (2021). An Inverse QSAR Method Based on Decision Tree and Integer Programming. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12837. Springer, Cham. https://doi.org/10.1007/978-3-030-84529-2_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84529-2_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84528-5

  • Online ISBN: 978-3-030-84529-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics