Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Survey on Anomaly Detection Strategies

  • Conference paper
  • First Online:
Second International Conference on Image Processing and Capsule Networks (ICIPCN 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 300))

Included in the following conference series:

Abstract

Anomaly detection can be defined as the process to find out the outliers of a dataset, where outliers or anomalies are the instances that don’t belong to that particular dataset. These anomalies might point to a wide range of things such as unusual network traffic, uncover a faulty sensor, or simply identify data for cleaning, before analysis, etc. Detecting anomalous behavior beforehand can prevent malignant abuse, data breaches, and intellectual property theft. Various anomaly detection techniques have recently become available and commonly used. Based on availability of techniques, one can yield better results for a specific user or dataset than others. This paper provides a concise overview of the most broadly used strategies for detecting anomalies. For this purpose, we present recent research works briefly, along with their established methodology. Finally, we outline some challenges to be dealt with while working with these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3) (2009)

    Google Scholar 

  2. Aggarwal, C.C.: Outlier Ensembles: Position Paper. ACM SIGKDD Explorations Newsletter. 14(2) (2013)

    Google Scholar 

  3. Gogoi, P., Bhattacharyya, D., Borah, B., Kalita, J.K.: A survey of outlier detection methods in network anomaly identification. Comput. J. 54(4), 570–588 (2011)

    Article  Google Scholar 

  4. Gupta, M., Gao, J., Aggarwal, C.C., Han, J.: Outlier Detection for Temporal Data: A Survey. IEEE T. Knowl. Data En. 26(9), 2250–2267 (2014)

    Article  Google Scholar 

  5. Ren, H., et al.: Time-series anomaly detection service at microsoft. In: 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2019)

    Google Scholar 

  6. Siffer, A., Fouque, P.A., Termier, A., Largouet, C.: anomaly detection in streams with extreme value theory. In: 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2017)

    Google Scholar 

  7. Ezeme, O.M., Mahmoud, Q.H., Azim, A.: A framework for anomaly detection in time-driven and event-driven processes using kernel traces. IEEE T. Knowl. Data En. (2020)

    Google Scholar 

  8. Liu, F., et al.: Anomaly detection in quasi-periodic time series based on automatic data segmentation and attentional LSTM-CNN. IEEE T. Knowl. Data En. (2020)

    Google Scholar 

  9. Maya, S., Ueno, K., Nishikawa, T.: dLSTM: a new approach for anomaly detection using deep learning with delayed prediction. Int. J. Data Sci. Anal. 8(2), 137–164 (2019). https://doi.org/10.1007/s41060-019-00186-0

    Article  Google Scholar 

  10. M¨unz, G., Li, S., Carle, G.: Traffic anomaly detection using K-means clustering. In: GI/ITG-Workshop MMBnet (2007)

    Google Scholar 

  11. Yasami, Y., Mozaffari, S.P.: A novel unsupervised classification approach for network anomaly detection by k-Means clustering and ID3 decision tree learning methods. J. Supercomput. 53, 231–245 (2010)

    Article  Google Scholar 

  12. Pang, G., Shen, C., Hengel, A.: Deep anomaly detection with deviation networks. In: 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2019)

    Google Scholar 

  13. Jidiga, G.R., Sammulal, P.: Anomaly detection using machine learning with a case study. In: IEEE International Conference on Advanced Communications, Control and Computing Technologies (2014)

    Google Scholar 

  14. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2017)

    Google Scholar 

  15. Lim, S.K., et al.: DOPING: generative data augmentation for unsupervised anomaly detection with GAN. In: IEEE International Conference on Data Mining (2018)

    Google Scholar 

  16. Zenati, H., Romain, M., Foo, C.S., Lecouat, B., Chandrasekhar, V.: Adversarially learned anomaly detection. In: IEEE International Conference on Data Mining (2018)

    Google Scholar 

  17. Tsou, Y.L., Chu, H.M., Li, C., Yang, S.W.: Robust distributed anomaly detection using optimal weighted one-class random forests. In: IEEE International Conference on Data Mining (2018)

    Google Scholar 

  18. Ramakrishnan, J., Shaabani, E., Li, C., Sustik, M.A.: Anomaly detection for an e-commerce pricing system. In: 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2019)

    Google Scholar 

  19. Oh, M., Iyengar, G.: Sequential anomaly detection using ınverse reinforcement learning. In: 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2019)

    Google Scholar 

  20. Chitrakar, R., Chuanhe, H.: Anomaly detection using support vector machine classification with k-Medoids clustering. In: 3rd Asian Himalayas International Conference on Internet (2012)

    Google Scholar 

  21. Golan, I., El-Yaniv, R.: Deep anomaly detection using geometric transformations. In: 32nd Conference on Neural Information Processing Systems (2018)

    Google Scholar 

  22. Vercruyssen, V., Meert, W., Verbruggen, G., Maes, K., Baumer, R., Davis, J.: Semi-supervised anomaly detection with an application to water analytics. In: IEEE International Conference on Data Mining (2018)

    Google Scholar 

  23. Ranjbar, V., Salehi, M., Jandaghi, P., Jalili, M.: QANet: tensor decomposition approach for query-based anomaly detection in heterogeneous information networks. IEEE T. Knowl. Data En. 31(11), 2178–2189 (2019)

    Article  Google Scholar 

  24. Peng, Z., Luo, M., Li, J., Xue, L., Zheng, Q.: A deep multi-view framework for anomaly detection on attributed networks. IEEE T. Knowl. Data En. 14(8) (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Shamsul Arefin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karim, R., Rizvi, M.A.I., Arefin, M.S. (2022). A Survey on Anomaly Detection Strategies. In: Chen, J.IZ., Tavares, J.M.R.S., Iliyasu, A.M., Du, KL. (eds) Second International Conference on Image Processing and Capsule Networks. ICIPCN 2021. Lecture Notes in Networks and Systems, vol 300. Springer, Cham. https://doi.org/10.1007/978-3-030-84760-9_25

Download citation

Publish with us

Policies and ethics