Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Strings from Linear Recurrences: A Gray Code

  • Conference paper
  • First Online:
Combinatorics on Words (WORDS 2021)

Abstract

Each strictly increasing sequence of positive integers can be used to define a numeration system so that any non-negative integer can be represented by a suitable and unique string of digits. We consider sequences defined by a two termed linear recurrence with constant coefficients having some particular properties and investigate on the possibility to define a Gray code for the set of the strings arising from them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barcucci, E., Bernini, A., Pinzani, R.: A gray code for a regular language. In: Ferrari, L., Vamvakari, M. (eds.) GASCom 2018, CEUR Workshop Proceedings, vol. 2113, pp. 87–93 (2018). http://ceur-ws.org/Vol-2113/

  2. Barcucci, E., Rinaldi, S.: Some linear recurrences and their combinatorial interpretation by means of regular languages. Theoret. Comput. Sci. 255, 679–686 (2001)

    Article  MathSciNet  Google Scholar 

  3. Bernini, A., Bilotta, S., Pinzani, R., Sabri, A., Vajnovszki, V.: Gray code orders for \(q\)-ary words avoiding a given factor. Acta Inform. 52, 573–592 (2015)

    Article  MathSciNet  Google Scholar 

  4. Fraenkel, A.S.: Systems of numeration. Amer. Math. Monthly 92, 105–114 (1985)

    Article  MathSciNet  Google Scholar 

  5. Sloane, N.J.A.: The online encyclopedia of integer sequences (2003). http://oeis.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Bernini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barcucci, E., Bernini, A., Pinzani, R. (2021). Strings from Linear Recurrences: A Gray Code. In: Lecroq, T., Puzynina, S. (eds) Combinatorics on Words. WORDS 2021. Lecture Notes in Computer Science(), vol 12847. Springer, Cham. https://doi.org/10.1007/978-3-030-85088-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85088-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85087-6

  • Online ISBN: 978-3-030-85088-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics