Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Improving Indoor Semantic Segmentation with Boundary-Level Objectives

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2021)

Abstract

While most of the recent literature on semantic segmentation has focused on outdoor scenarios, the generation of accurate indoor segmentation maps has been partially under-investigated, although being a relevant task with applications in augmented reality, image retrieval, and personalized robotics. With the goal of increasing the accuracy of semantic segmentation in indoor scenarios, we develop and propose two novel boundary-level training objectives, which foster the generation of accurate boundaries between different semantic classes. In particular, we take inspiration from the Boundary and Active Boundary losses, two recent proposals which deal with the prediction of semantic boundaries, and propose modified geometric distance functions that improve predictions at the boundary level. Through experiments on the NYUDv2 dataset, we assess the appropriateness of our proposal in terms of accuracy and quality of boundary prediction and demonstrate its accuracy gain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acuna, D., Kar, A., Fidler, S.: Devil is in the edges: learning semantic boundaries from noisy annotations. In: CVPR (2019)

    Google Scholar 

  2. Berman, M., Triki, A.R., Blaschko, M.B.: The lovász-softmax loss: a tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In: CVPR (2018)

    Google Scholar 

  3. Bertasius, G., Torresani, L., Yu, S.X., Shi, J.: Convolutional random walk networks for semantic image segmentation. In: CVPR (2017)

    Google Scholar 

  4. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. In: CVPR (2017)

    Google Scholar 

  5. Ding, H., Jiang, X., Liu, A.Q., Thalmann, N.M., Wang, G.: Boundary-aware feature propagation for scene segmentation. In: ICCV (2019)

    Google Scholar 

  6. Ding, H., Jiang, X., Shuai, B., Liu, A.Q., Wang, G.: Semantic correlation promoted shape-variant context for segmentation. In: CVPR (2019)

    Google Scholar 

  7. Gupta, S., Arbelaez, P., Malik, J.: Perceptual organization and recognition of indoor scenes from rgb-d images. In: CVPR (2013)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  9. Hu, W., Zhao, H., Jiang, L., Jia, J., Wong, T.T.: Bidirectional projection network for cross dimension scene understanding. In: CVPR (2021)

    Google Scholar 

  10. Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: Ccnet: criss-cross attention for semantic segmentation. In: ICCV (2019)

    Google Scholar 

  11. Ke, T.W., Hwang, J.J., Liu, Z., Yu, S.X.: Adaptive affinity fields for semantic segmentation. In: ECCV (2018)

    Google Scholar 

  12. Kervadec, H., Bouchtiba, J., Desrosiers, C., Granger, E., Dolz, J., Ayed, I.B.: Boundary loss for highly unbalanced segmentation. In: MIDL (2019)

    Google Scholar 

  13. Kirillov, A., Wu, Y., He, K., Girshick, R.: Pointrend: image segmentation as rendering. In: CVPR (2020)

    Google Scholar 

  14. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected crfs with gaussian edge potentials. In: NeurIPS (2011)

    Google Scholar 

  15. Kundu, A., et al.: Virtual multi-view fusion for 3D semantic segmentation. In: ECCV (2020)

    Google Scholar 

  16. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)

    Google Scholar 

  17. Silberman, N., Hoiem, P.K.D., Fergus, R.: Indoor segmentation and support inference from rgbd images. In: ECCV (2012)

    Google Scholar 

  18. Pang, Y., Li, Y., Shen, J., Shao, L.: Towards bridging semantic gap to improve semantic segmentation. In: CVPR (2019)

    Google Scholar 

  19. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)

    Google Scholar 

  20. Takikawa, T., Acuna, D., Jampani, V., Fidler, S.: Gated-scnn: gated shape cnns for semantic segmentation. In: ICCV (2019)

    Google Scholar 

  21. Wang, C., et al.: Active boundary loss for semantic segmentation. arXiv preprint arXiv:2102.02696 (2021)

  22. Wang, L., Li, D., Zhu, Y., Tian, L., Shan, Y.: Dual super-resolution learning for semantic segmentation. In: CVPR (2020)

    Google Scholar 

  23. Xiaofeng, R., Bo, L.: Discriminatively trained sparse code gradients for contour detection. In: NeurIPS (2012)

    Google Scholar 

  24. Yu, Z., Feng, C., Liu, M.Y., Ramalingam, S.: Casenet: deep category-aware semantic edge detection. In: CVPR (2017)

    Google Scholar 

  25. Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020)

    Google Scholar 

  26. Yuan, Y., Xie, J., Chen, X., Wang, J.: Segfix: model-agnostic boundary refinement for segmentation. In: ECCV (2020)

    Google Scholar 

  27. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR (2017)

    Google Scholar 

  28. Zhuo, W., Salzmann, M., He, X., Liu, M.: Indoor scene parsing with instance segmentation, semantic labeling and support relationship inference. In: CVPR (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Amoroso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amoroso, R., Baraldi, L., Cucchiara, R. (2021). Improving Indoor Semantic Segmentation with Boundary-Level Objectives. In: Rojas, I., Joya, G., Català, A. (eds) Advances in Computational Intelligence. IWANN 2021. Lecture Notes in Computer Science(), vol 12862. Springer, Cham. https://doi.org/10.1007/978-3-030-85099-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85099-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85098-2

  • Online ISBN: 978-3-030-85099-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics