Abstract
While most of the recent literature on semantic segmentation has focused on outdoor scenarios, the generation of accurate indoor segmentation maps has been partially under-investigated, although being a relevant task with applications in augmented reality, image retrieval, and personalized robotics. With the goal of increasing the accuracy of semantic segmentation in indoor scenarios, we develop and propose two novel boundary-level training objectives, which foster the generation of accurate boundaries between different semantic classes. In particular, we take inspiration from the Boundary and Active Boundary losses, two recent proposals which deal with the prediction of semantic boundaries, and propose modified geometric distance functions that improve predictions at the boundary level. Through experiments on the NYUDv2 dataset, we assess the appropriateness of our proposal in terms of accuracy and quality of boundary prediction and demonstrate its accuracy gain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Acuna, D., Kar, A., Fidler, S.: Devil is in the edges: learning semantic boundaries from noisy annotations. In: CVPR (2019)
Berman, M., Triki, A.R., Blaschko, M.B.: The lovász-softmax loss: a tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In: CVPR (2018)
Bertasius, G., Torresani, L., Yu, S.X., Shi, J.: Convolutional random walk networks for semantic image segmentation. In: CVPR (2017)
Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. In: CVPR (2017)
Ding, H., Jiang, X., Liu, A.Q., Thalmann, N.M., Wang, G.: Boundary-aware feature propagation for scene segmentation. In: ICCV (2019)
Ding, H., Jiang, X., Shuai, B., Liu, A.Q., Wang, G.: Semantic correlation promoted shape-variant context for segmentation. In: CVPR (2019)
Gupta, S., Arbelaez, P., Malik, J.: Perceptual organization and recognition of indoor scenes from rgb-d images. In: CVPR (2013)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
Hu, W., Zhao, H., Jiang, L., Jia, J., Wong, T.T.: Bidirectional projection network for cross dimension scene understanding. In: CVPR (2021)
Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: Ccnet: criss-cross attention for semantic segmentation. In: ICCV (2019)
Ke, T.W., Hwang, J.J., Liu, Z., Yu, S.X.: Adaptive affinity fields for semantic segmentation. In: ECCV (2018)
Kervadec, H., Bouchtiba, J., Desrosiers, C., Granger, E., Dolz, J., Ayed, I.B.: Boundary loss for highly unbalanced segmentation. In: MIDL (2019)
Kirillov, A., Wu, Y., He, K., Girshick, R.: Pointrend: image segmentation as rendering. In: CVPR (2020)
Krähenbühl, P., Koltun, V.: Efficient inference in fully connected crfs with gaussian edge potentials. In: NeurIPS (2011)
Kundu, A., et al.: Virtual multi-view fusion for 3D semantic segmentation. In: ECCV (2020)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)
Silberman, N., Hoiem, P.K.D., Fergus, R.: Indoor segmentation and support inference from rgbd images. In: ECCV (2012)
Pang, Y., Li, Y., Shen, J., Shao, L.: Towards bridging semantic gap to improve semantic segmentation. In: CVPR (2019)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)
Takikawa, T., Acuna, D., Jampani, V., Fidler, S.: Gated-scnn: gated shape cnns for semantic segmentation. In: ICCV (2019)
Wang, C., et al.: Active boundary loss for semantic segmentation. arXiv preprint arXiv:2102.02696 (2021)
Wang, L., Li, D., Zhu, Y., Tian, L., Shan, Y.: Dual super-resolution learning for semantic segmentation. In: CVPR (2020)
Xiaofeng, R., Bo, L.: Discriminatively trained sparse code gradients for contour detection. In: NeurIPS (2012)
Yu, Z., Feng, C., Liu, M.Y., Ramalingam, S.: Casenet: deep category-aware semantic edge detection. In: CVPR (2017)
Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020)
Yuan, Y., Xie, J., Chen, X., Wang, J.: Segfix: model-agnostic boundary refinement for segmentation. In: ECCV (2020)
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR (2017)
Zhuo, W., Salzmann, M., He, X., Liu, M.: Indoor scene parsing with instance segmentation, semantic labeling and support relationship inference. In: CVPR (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Amoroso, R., Baraldi, L., Cucchiara, R. (2021). Improving Indoor Semantic Segmentation with Boundary-Level Objectives. In: Rojas, I., Joya, G., Català , A. (eds) Advances in Computational Intelligence. IWANN 2021. Lecture Notes in Computer Science(), vol 12862. Springer, Cham. https://doi.org/10.1007/978-3-030-85099-9_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-85099-9_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85098-2
Online ISBN: 978-3-030-85099-9
eBook Packages: Computer ScienceComputer Science (R0)