Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Discounted Cost Function for Fast Alignments of Business Processes

  • Conference paper
  • First Online:
Business Process Management (BPM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12875))

Included in the following conference series:

  • 3326 Accesses

Abstract

Alignments are a central notion in conformance checking. They establish the best possible connection between an observed trace and a process model, exhibiting the closest model run to the trace. Computing these alignments for huge amounts of traces, coming from big logs, is a computational bottleneck. We show that, for a slightly modified version of the distance function between traces and model runs, we significantly improve the execution time of an A*-based search algorithm. We show experimentally that the alignments found with our modified distance approximate very nicely the optimal alignments for the classical distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Currently available at https://github.com/BoltMaud/pm4py-core.

  2. 2.

    Available at https://github.com/BoltMaud/A-Discounted-Cost-Function-for-Fast-Alignments-of-Business-Processes-Sources.

  3. 3.

    Prototype Selection plugin of ProM software with default settings.

  4. 4.

    Available at https://github.com/BoltMaud/A-Discounted-Cost-Function-for-Fast-Alignments-of-Business-Processes-Sources.

References

  1. Adriansyah, A.: Aligning observed and modeled behavior, Ph.D. thesis. Technische Universiteit Eindhoven (2014)

    Google Scholar 

  2. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Memory-efficient alignment of observed and modeled behavior. BPM Center Report, vol. 3, pp. 1–44 (2013)

    Google Scholar 

  3. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Polyvyanyy, A.: Split miner: automated discovery of accurate and simple business process models from event logs. Knowl. Inf. Syst. 59(2), 251–284 (2019)

    Article  Google Scholar 

  4. Berti, A., van der Aalst, W.M.P.: Reviving token-based replay: increasing speed while improving diagnostics. In: ATAED@ Petri Nets/ACSD, pp. 87–103 (2019)

    Google Scholar 

  5. Bloemen, V., van Zelst, S.J., van der Aalst, W.M.P., van Dongen, B.F., van de Pol, J.: Maximizing synchronization for aligning observed and modelled behaviour. In: Proceedings of the 16th International Conference on Business Process Management, BPM 2018, Sydney, NSW, Australia, 9–14 September 2018, pp. 233–249 (2018)

    Google Scholar 

  6. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking - Relating Processes and Models. Springer, Switzerland (2018). https://doi.org/10.1007/978-3-319-99414-7

  7. de Leoni, M., Marrella, A.: Aligning real process executions and prescriptive process models through automated planning. Exp. Syst. Appl. 82, 162–183 (2017)

    Article  Google Scholar 

  8. Sani, M.F., Boltenhagen, M., van der Aalst, W.: Prototype selection based on clustering and conformance metrics for model discovery. arXiv (2019)

    Google Scholar 

  9. Lee, W.L.J., Verbeek, H.M.W., Munoz-Gama, J., van der Aalst, W.M.P., Sepúlveda, M.: Recomposing conformance: closing the circle on decomposed alignment-based conformance checking in process mining. Inf. Sci. 466, 55–91 (2018)

    Article  Google Scholar 

  10. Leemans, S.J.J., Fahland, D., Wil, M.P.: van der Aalst. Scalable process discovery and conformance checking. Softw. Syst. Model. 17(2), 599–631 (2018)

    Article  Google Scholar 

  11. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06257-0_6

    Chapter  Google Scholar 

  12. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-entry single-exit decomposed conformance checking. Inf. Syst. 46, 102–122 (2014)

    Article  Google Scholar 

  13. Murata, T.: Petri Nets: properties, analysis and applications. Proc. IEEE 77(4), 541–574 (1989)

    Article  Google Scholar 

  14. Reijers, H.A., Liman Mansar, S.: Best practices in business process redesign: an overview and qualitative evaluation of successful redesign heuristics. Omega 33(4), 283–306 (2005)

    Article  Google Scholar 

  15. Reißner, D., Conforti, R., Dumas, M., Rosa, M.L., Armas-Cervantes, A.: Scalable conformance checking of business processes. In: OTM CoopIS, Rhodes, Greece, pp. 607–627 (2017)

    Google Scholar 

  16. Reißner, D., Armas-Cervantes, A., Conforti, R., Dumas, M., Fahland, D., La Rosa, M.: Scalable alignment of process models and event logs: an approach based on automata and s-componentsd. Inf. Syst. 94, 101561 (2020)

    Article  Google Scholar 

  17. Ribeiro, J., Carmona, J., Mısır, M., Sebag, M.: A recommender system for process discovery. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 67–83. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10172-9_5

    Chapter  Google Scholar 

  18. Taymouri, F., Carmona, J.: Model and event log reductions to boost the computation of alignments. In: Ceravolo, P., Guetl, C., Rinderle-Ma, S. (eds.) SIMPDA 2016. LNBIP, vol. 307, pp. 1–21. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74161-1_1

    Chapter  Google Scholar 

  19. Taymouri, F., Carmona, J.: A recursive paradigm for aligning observed behavior of large structured process models. In 14th International Conference of Business Process Management (BPM), Rio de Janeiro, Brazil, 18–22 September, pp. 197–214 (2016)

    Google Scholar 

  20. Taymouri, F., Carmona, J.: Model and event log reductions to boost the computation of alignments. In: Ceravolo, P., Guetl, C., Rinderle-Ma, S. (eds.) SIMPDA 2016. LNBIP, vol. 307, pp. 1–21. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74161-1_1

    Chapter  Google Scholar 

  21. Taymouri, F., Carmona, J.: Computing alignments of well-formed process models using local search. ACM Trans. Softw. Eng. Methodol. 29(3), 15:1–15:41 (2020)

    Google Scholar 

  22. van der Aalst, W.M.P.: Decomposing Petri Nets for process mining: a generic approach. Distrib. Parallel Databases 31(4), 471–507 (2013)

    Article  Google Scholar 

  23. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

  24. van der Aalst, W.M.P.: Re-engineering knock-out processes. Decis. Support Syst. 30(4), 451–468 (2001)

    Article  Google Scholar 

  25. van Zelst, S.J., Bolt, A., Hassani, M., van Dongen, B.F., Wil, M.P.: van der Aalst. Online conformance checking: relating event streams to process models using prefix-alignments. Int. J. Data Sci. Anal. 8(3), 269–284 (2019)

    Article  Google Scholar 

  26. van Zelst, S.J., Bolt, A., van Dongen, B.F.: Tuning alignment computation: an experimental evaluation. In: ATAED@ Petri Nets/ACSD, pp. 6–20 (2017)

    Google Scholar 

  27. Verbeek, H.M.W., van der Aalst, W.M.P.: Merging alignments for decomposed replay. In: Kordon, F., Moldt, D. (eds.) PETRI NETS 2016. LNCS, vol. 9698, pp. 219–239. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39086-4_14

    Chapter  Google Scholar 

  28. Winskel, G.: Petri Nets, algebras, morphisms, and compositionality. Inf. Comput. 72(3), 197–238 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mathilde Boltenhagen , Thomas Chatain or Josep Carmona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boltenhagen, M., Chatain, T., Carmona, J. (2021). A Discounted Cost Function for Fast Alignments of Business Processes. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds) Business Process Management. BPM 2021. Lecture Notes in Computer Science(), vol 12875. Springer, Cham. https://doi.org/10.1007/978-3-030-85469-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85469-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85468-3

  • Online ISBN: 978-3-030-85469-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics