Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Horizontal Scaling in Cloud Using Contextual Bandits

  • Conference paper
  • First Online:
Euro-Par 2021: Parallel Processing (Euro-Par 2021)

Abstract

One characteristic of the Cloud is elasticity: it provides the ability to adapt resources allocated to applications as needed at runtime. This capacity relies on scaling and scheduling. In this article online horizontal scaling is studied. The aim is to determine dynamically applications deployment parameters and to adjust them in order to respect a Quality of Service level without any human parameters tuning. This work focuses on CaaS (container-based) environments and proposes an algorithm based on contextual bandits (HSLinUCB). Our proposal has been evaluated on a simulated platform and on a real Kubernetes’s platform. The comparison has been done with several baselines: threshold based auto-scaler, Q-Learning, and Deep Q-Learning. The results show that HSLinUCB gives very good results compared to other baselines, even when used without any training period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://aws.amazon.com/ec2/autoscaling/.

  2. 2.

    https://docs.openstack.org/senlin/latest/tutorial/autoscaling.html.

  3. 3.

    https://aws.amazon.com/blogs/aws/new-predictive-scaling-for-ec2-powered-by-machine-learning/.

  4. 4.

    https://github.com/Orange-OpenSource/HSLinUCB.

  5. 5.

    https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/.

  6. 6.

    https://github.com/kubernetes/kubernetes/tree/master/pkg/controller/podautoscaler.

References

  1. Abbasi-Yadkori, Y., Pal, D., Szepesvari, C.: Improved algorithms for linearstochastic bandits. In: NIPS (2011)

    Google Scholar 

  2. Abdullah, M., Iqbal, W., Bukhari, F.: Containers vs virtual machines for auto-scaling multi-tier applications under dynamically increasing workloads. In: Intelligent Technologies and Applications (2019)

    Google Scholar 

  3. Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., Merle, P.: Elasticity in cloud computing: State of the art and research challenges. IEEE Trans. Serv, Comput. 11(2), 430–447 (2018). https://doi.org/10.1109/TSC.2017.2711009

  4. Ayimba, C., Casari, P., Mancuso, V.: SQLR: short term memory q-learning for elastic provisioning. CoRR (2019)

    Google Scholar 

  5. Barrett, E., Howley, E., Duggan, J.: Applying reinforcement learning towards automating resource allocation and application scalability in the cloud. Concurr. Comput. Pract, Exp 25(12), 1656–1674 (2013)

    Google Scholar 

  6. Cano, I., et al.: ADARES: Adaptive resource management for virtual machines. arXiv (2018)

    Google Scholar 

  7. Coutinho, E.F., de Carvalho Sousa, F.R., Rego, P.A.L., Gomes, D.G., de Souza, J.N.: Elasticity in cloud computing: a survey. annals of telecommunications - annales des télécommunications, pp. 289–309 (2014). https://doi.org/10.1007/s12243-014-0450-7

  8. Dutreilh, X., Kirgizov, S., Melekhova, O., Malenfant, J., Rivierre, N., Truck, I.: Using reinforcement learning for autonomic resource allocation in clouds: Towards a fully automated workflow. In: ICAS (2011)

    Google Scholar 

  9. Gari, Y., Monge, D.A., Pacini, E., Mateos, C., Garino, C.G.: Reinforcement learning-based autoscaling of workflows in the cloud: A survey. CoRR (2020)

    Google Scholar 

  10. Hwang, K., Bai, X., Shi, Y., Li, M., Chen, W., Wu, Y.: Cloud performance modeling with benchmark evaluation of elastic scaling strategies. IEEE Trans. Parallel Distrib. Syst. 27(1), 130–143 (2016)

    Article  Google Scholar 

  11. Jin, Y., Bouzid, M., Kostadinov, D., Aghasaryan, A.: Model-free resource management of cloud-based applications using reinforcement learning. In: ICIN (2018)

    Google Scholar 

  12. Khatua, S., Ghosh, A., Mukherjee, N.: Optimizing the utilization of virtual resources in cloud environment. In: VECIMS (2010)

    Google Scholar 

  13. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to personalized news article recommendation. In: WWW (2010)

    Google Scholar 

  14. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of auto-scaling techniques for elastic applications in cloud environments. J. Grid Comput. 1–34 (2014). https://doi.org/10.1007/s10723-014-9314-7

  15. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  16. Nguyen, H., Shen, Z., Gu, X., Subbiah, S., Wilkes, J.: AGILE: Elastic distributed resource scaling for infrastructure-as-a-service. In: ICAC (2013)

    Google Scholar 

  17. Nikravesh, A.Y., Ajila, S.A., Lung, C.: Towards an autonomic auto-scaling prediction system for cloud resource provisioning. In: SEAMS (2015)

    Google Scholar 

  18. Pascual, J.A., Lozano, J.A., Miguel-Alonso, J.: Effects of reducing VMs management times on elastic applications. J. Grid Comput. 518(7540), 529–533 (2018)

    Google Scholar 

  19. Qu, C., Calheiros, R.N., Buyya, R.: Auto-scaling web applications in clouds: a taxonomy and survey. ACM Comput. Surv. 51(4), 1–33 (2018)

    Article  Google Scholar 

  20. Schuler, L., Jamil, S., Kühl, N.: AI-based resource allocation: Reinforcement learning for adaptive auto-scaling in serverless environments. arXiv (2020)

    Google Scholar 

  21. Shariffdeen, R.S., Munasinghe, D.T.S.P., Bhathiya, H.S., Bandara, U.K.J.U., Bandara, H.M.N.D.: Adaptive workload prediction for proactive auto scaling in PaaS systems. In: CloudTech (2016)

    Google Scholar 

  22. Singh, P., Gupta, P., Jyoti, K., Nayyar, A.: Research on auto-scaling of web applications in cloud: Survey, trends and future directions. Pract. Experience Scalable Comput. 20(2), 399–432 (2019)

    Article  Google Scholar 

  23. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning. MIT Press, Cambridge (1998)

    Google Scholar 

  24. Tadakamalla, V., Menasce, D.A.: Model-driven elasticity control for multi-server queues under traffic surges in cloud environments. In: ICAC (2018)

    Google Scholar 

  25. Toslali, M., Parthasarathy, S., Oliveira, F., Coskun, A.K.: JACKPOT: Online experimentation of cloud microservices. In: HotCloud (2020)

    Google Scholar 

  26. Urdaneta, G., Pierre, G., van Steen, M.: Wikipedia workload analysis for decentralized hosting. Comput. Netw. 53(11), 1830–1845 (2009)

    Article  Google Scholar 

  27. Wei, Y., Kudenko, D., Liu, S., Pan, L., Wu, L., Meng, X.: A reinforcement learning based auto-scaling approach for SaaS providers in dynamic cloud environment. Math. Prob. Eng. 2019, 11 p. (2019). Article ID 5080647. https://doi.org/10.1155/2019/5080647

  28. Xu, H., Liu, Y., Lau, W.C., Zeng, T., Guo, J., Liu, A.X.: Online resource allocation with machine variability: a bandit perspective. IEEE/ACM Trans. Networking 28(5), 2243–2256 (2020). https://doi.org/10.1109/TNET.2020.3006906

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Delande .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Delande, D., Stolf, P., Feraud, R., Pierson, JM., Bottaro, A. (2021). Horizontal Scaling in Cloud Using Contextual Bandits. In: Sousa, L., Roma, N., Tomás, P. (eds) Euro-Par 2021: Parallel Processing. Euro-Par 2021. Lecture Notes in Computer Science(), vol 12820. Springer, Cham. https://doi.org/10.1007/978-3-030-85665-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85665-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85664-9

  • Online ISBN: 978-3-030-85665-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics