Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Trace-Based Workload Generation and Execution

  • Conference paper
  • First Online:
Euro-Par 2021: Parallel Processing (Euro-Par 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12820))

Included in the following conference series:

Abstract

Although major cloud providers have captured and published workload executions in the form of traces, it is not clear how to use them for workload generation on a wide range of existing platforms. A methodological challenge that remains is to generate and execute realistic datacenter workloads on any infrastructure, using information from available traces. In this paper, we propose Tracie, a methodology addressing this challenge, and introduce the tool supporting its implementation. We present all the necessary steps starting from a trace up to workload execution: analysis of datacenter traces, extraction of parameters, application selection, and scaling of a workload to match the capabilities of the underlying infrastructure. Our evaluation validates that Tracie can generate executable workloads that closely resemble their trace-based counterparts. For validation, we correlate the recorded system metrics of a trace against the actual execution. We find that the average system metrics of synthetic workloads differ at most 5% compared to the trace and that they are highly correlated at 70% on average.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ab Benchmark - Apache HTTP server benchmarking tool. https://httpd.apache.org/docs/2.4/programs/ab.html

  2. Swim. https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository

  3. The Apache CouchDB. https://couchdb.apache.org/

  4. The Memcached I/O cache. https://memcached.org/

  5. The Redis Database. https://redis.io/

  6. Abdul-Rahman, O.A., Aida, K.: Towards understanding the usage behavior of Google cloud users: the mice and elephants phenomenon. In: IEEE International Conference on Cloud Computing Technology and Science (CloudCom 2014)

    Google Scholar 

  7. Apache: GridMix. https://hadoop.apache.org/docs/r1.2.1/gridmix.html

  8. Benesty, J., Chen, J., Huang, Y., Cohen, I.: Pearson correlation coefficient. In: Noise Reduction in Speech Processing. Springer Topics in Signal Processing, vol. 2, pp. 1–4. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00296-0_5

  9. Che, S., et al.: Rodinia: a benchmark suite for heterogeneous computing. In: Proceedings of the 2009 IEEE International Symposium on Workload Characterization (IISWC)

    Google Scholar 

  10. Chen, Y., Alspaugh, S., Katz, R.: Interactive analytical processing in big data systems: A cross-industry study of mapreduce workloads. arXiv preprint arXiv:1208.4174 (2012)

  11. Chen, Y., Ganapathi, A.S., Griffith, R., Katz, R.H.: Analysis and lessons from a publicly available Google cluster trace. Technical report. UCB/EECS-2010-95, EECS Department, University of California, Berkeley, June 2010. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-95.html

  12. Di, S., Kondo, D., Cappello, F.: Characterizing and modeling cloud applications/jobs on a Google data center. J. Supercomput. 69, 139–160 (2014). https://doi.org/10.1007/s11227-014-1131-z

    Article  Google Scholar 

  13. Di, S., Kondo, D., Cirne, W.: Characterization and comparison of cloud versus grid workloads. In: IEEE Cluster (2012)

    Google Scholar 

  14. Efron, B., Tibshirani, R., et al.: Using specially designed exponential families for density estimation. Ann. Stat. 24(6), 2431–2461 (1996)

    Article  MathSciNet  Google Scholar 

  15. Gao, W., et al.: Bigdatabench: A scalable and unified big data and ai benchmark suite. arXiv preprint arXiv:1802.08254 (2018)

  16. Gray, A.G., Moore, A.W.: Nonparametric density estimation: toward computational tractability. In: Proceedings of the 2003 SIAM International Conference on Data Mining, pp. 203–211. SIAM (2003)

    Google Scholar 

  17. Guidoum, A.C.: Kernel estimator and bandwidth selection for density and its derivatives. The Kedd package, version 1 (2015)

    Google Scholar 

  18. Han, R., Zong, Z., Zhang, F., Vazquez-Poletti, J.L., Jia, Z., Wang, L.: Cloudmix: generating diverse and reducible workloads for cloud systems. In: 2017 IEEE 10th International Conference on Cloud Computing (CLOUD)

    Google Scholar 

  19. Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The hibench benchmark suite: characterization of the mapreduce-based data analysis. In: 2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW). IEEE (2010)

    Google Scholar 

  20. Izenman, A.J.: Review papers: recent developments in nonparametric density estimation. J. Am. Stat. Assoc. 86(413), 205–224 (1991)

    MathSciNet  MATH  Google Scholar 

  21. Karamizadeh, S., Abdullah, S.M., Manaf, A.A., Zamani, M., Hooman, A.: An overview of principal component analysis. J. Signal Inf. Process. 4(3B), 173 (2013)

    Google Scholar 

  22. Liu, B., Lin, Y., Chen, Y.: Quantitative workload analysis and prediction using Google cluster traces. In: 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),pp. 935–940 (2016)

    Google Scholar 

  23. Liu, Z., Cho, S.: Characterizing machines and workloads on a Google cluster. In: Proceedings of the 2012 41st International Conference on Parallel Processing Workshops, ICPPW 2012, IEEE Computer Society, Washington, DC

    Google Scholar 

  24. Lu, C., Ye, K., Xu, G., Xu, C.Z., Bai, T.: Imbalance in the cloud: an analysis on Alibaba cluster trace. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 2884–2892. IEEE (2017)

    Google Scholar 

  25. Moreno, I.S., Garraghan, P., Townend, P., Xu, J.: An approach for characterizing workloads in Google cloud to derive realistic resource utilization models. In: SOSE, pp. 49–60. IEEE Computer Society (2013)

    Google Scholar 

  26. Nambiar, R., Wakou, N., Carman, F., Majdalany, M.: Transaction Processing Performance Council (TPC), State of the council (2010)

    Google Scholar 

  27. Nedelcu, C.: Nginx HTTP Server: Adopt Nginx for Your Web Applications to Make the Most of Your Infrastructure and Serve Pages Faster Than Ever. Packt Publishing Ltd., Birmingham (2010)

    Google Scholar 

  28. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Heterogeneity and dynamicity of clouds at scale: Google trace analysis. In: Proceedings of the Third ACM Symposium on Cloud Computing (2012)

    Google Scholar 

  29. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Towards understanding heterogeneous clouds at scale: Google trace analysis (2012)

    Google Scholar 

  30. Tirmazi, M., et al.: Borg: the next generation. In: Proceedings of the Fifteenth European Conference on Computer Systems, pp. 1–14 (2020)

    Google Scholar 

  31. Varanasi, M.K., Aazhang, B.: Parametric generalized gaussian density estimation. J. Acoust. Soc. Am. 86(4), 1404–1415 (1989)

    Article  Google Scholar 

  32. Xiong, X., et al.: DCMIX: generating mixed workloads for the cloud data center. In: Zheng, C., Zhan, J. (eds.) Bench 2018. LNCS, vol. 11459, pp. 105–117. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32813-9_10

    Chapter  Google Scholar 

  33. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I., et al.: Spark: cluster computing with working sets. HotCloud 10(10), 95 (2010)

    Google Scholar 

Download references

Acknowledgments

We thankfully acknowledge the support of the European Commission under the Horizon 2020 Framework Programme for Research and Innovation through the EVOLVE H2020 project (Grant Agreement Nr 825061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannis Sfakianakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sfakianakis, Y., Kanellou, E., Marazakis, M., Bilas, A. (2021). Trace-Based Workload Generation and Execution. In: Sousa, L., Roma, N., Tomás, P. (eds) Euro-Par 2021: Parallel Processing. Euro-Par 2021. Lecture Notes in Computer Science(), vol 12820. Springer, Cham. https://doi.org/10.1007/978-3-030-85665-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85665-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85664-9

  • Online ISBN: 978-3-030-85665-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics