Abstract
This paper presents a new forecasting algorithm for time series in streaming named StreamWNN. The methodology has two well-differentiated stages: the algorithm searches for the nearest neighbors to generate an initial prediction model in the batch phase. Then, an online phase is carried out when the time series arrives in streaming. In particular, the nearest neighbor of the streaming data from the training set is computed and the nearest neighbors, previously computed in the batch phase, of this nearest neighbor are used to obtain the predictions. Results using the electricity consumption time series are reported, showing a remarkable performance of the proposed algorithm in terms of forecasting errors when compared to a nearest neighbors-based benchmark algorithm. The running times for the predictions are also remarkable.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bifet, A., Morales, G.F.: Big data stream learning with SAMOA. In: Proceedings of the IEEE International Conference on Data Mining Workshop (ICDM), pp. 1199–1202 (2015)
Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)
De Silva, D., Yu, X., Alahakoon, D., Holmes, G.: Incremental pattern characterization learning and forecasting for electricity consumption using smart meters. In: Proceedings of the IEEE International Symposium on Industrial Electronics, pp. 807–812 (2011)
Dudani, S.A.: The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst. Man Cybern. 6(4), 325–327 (1976)
Fernández, A.M., Gutiérrez-Avilés, D., Troncoso, A., Martínez-Álvarez, F.: Real-time big data analytics in smart cities from LoRa-based IoT networks. In: Martínez Álvarez, F., Troncoso Lora, A., Sáez Muñoz, J.A., Quintián, H., Corchado, E. (eds.) SOCO 2019. AISC, vol. 950, pp. 91–100. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-20055-8_9
Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining data streams: a review. ACM SIGMOD Rec. 34(2), 18–26 (2005)
Galicia, A., Talavera-Llames, R., Troncoso, A., Koprinska, I., Martínez-Álvarez, F.: Multi-step forecasting for big data time series based on ensemble learning. Knowl. Based Syst. 163, 830–841 (2019)
Gama, J., Rodrigues, P.P.: Stream-based electricity load forecast. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 446–453. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74976-9_45
Gutiérrez-Avilés, D., et al.: SmartFD: a real big data application for electrical fraud detection. In: de Cos Juez, F., et al. (eds.) HAIS 2018. LNCS, vol. 10870, pp. 120–130. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92639-1_11
He, H., Chen, S., Li, K., Xu, X.: Incremental learning from stream data. IEEE Trans. Neural Networks 22(12), 1901–1914 (2011)
Lara-Benítez, P., Carranza-García, M., Luna-Romera, J.M., Riquelme, J.C.: Temporal convolutional networks applied to energy-related time series forecasting. Appl. Sci. 10(7), 2322 (2020)
Lara-Benítez, P., Carranza-García, M., Riquelme, J.C.: An experimental review on deep learning architectures for time series forecasting. Int. J. Neural Syst. 31(03), 2130001 (2021)
Li, Y., Li, D., Wang, S., Zhai, Y.: Incremental entropy-based clustering on categorical data streams with concept drift. Knowl. Based Syst. 59, 33–47 (2014)
Liu, L.P., Jiang, Y., Zhou, Z.H.: Least square incremental linear discriminant analysis. In: Proceedings of the IEEE International Conference on Data Mining, pp. 298–306 (2009)
Liu, X., Iftikhar, N., Xie, X.: Survey of real-time processing systems for big data. In: Proceedings of the International Database Engineering and Applications Symposium, pp. 356–361 (2014)
Maillo, J., Ramírez, S., Triguero, I., Herrera, F.: kNN-IS: an iterative spark-based design of the k-nearest neighbors classifier for big data. Knowl. Based Syst. 117, 3–15 (2017)
Martínez-Álvarez, F., Troncoso, A., Riquelme, J.C., Aguilar-Ruiz, J.S.: Energy time series forecasting based on pattern sequence similarity. IEEE Trans. Knowl. Data Eng. 23(8), 1230–1243 (2010)
Ng, W.W.Y., Zhang, J., Lai, C.S., Pedrycz, W., Lai, L.L., Wang, X.: Cost-sensitive weighting and imbalance-reversed bagging for streaming imbalanced and concept drifting in electricity pricing classification. IEEE Trans. Ind. Inform. 15(3), 1588–1597 (2019)
Pérez-Chacón, R., Luna-Romera, J.M., Troncoso, A., Martínez-Álvarez, F., Riquelme, J.C.: Big data analytics for discovering electricity consumption patterns in smart cities. Energies 11(3), 683 (2018)
Shahrivari, S.: Beyond batch processing: towards real-time and streaming big data. Computers 3(4), 117–129 (2014)
Talavera-Llames, R., Pérez-Chacón, R., Troncoso, A., Martínez-Álvarez, F.: MV-kWNN: a novel multivariate and multi-output weighted nearest neighbours algorithm for big data time series forecasting. Neurocomputing 353, 56–73 (2019)
Talavera-Llames, R., Pérez-Chacón, R., Troncoso, A., Martínez-Álvarez, F.: Big data time series forecasting based on nearest neighbours distributed computing with spark. Knowl. Based Syst. 161, 12–25 (2018)
Torres, J.F., Galicia, A., Troncoso, A., Martínez-Álvarez, F.: A scalable approach based on deep learning for big data time series forecasting. Integr. Comput. Aided Eng. 25(4), 335–348 (2018)
Troncoso, A., Riquelme-Santos, J.M., Gómez-Expósito, A., Martínez-Ramos, J.L., Riquelme-Santos, J.C.: Electricity market price forecasting based on weighted nearest neighbors techniques. IEEE Trans. Power Syst. 22(3), 1294–1301 (2007)
Troncoso, A., Riquelme, J.C., Aguilar-Ruiz, J.S., Riquelme-Santos, J.M.: Evolutionary techniques applied to the optimal short-term scheduling of the electrical energy production. Eur. J. Oper. Res. 185(3), 1114–1127 (2008)
Wang, W., Men, C., Lu, W.: Online prediction model based on support vector machine. Neurocomputing 71(4–6), 550–558 (2008)
Zhang, X., Qian, Z., Shen, S., Shi, J., Wang, S.: Streaming massive electric power data analysis based on spark streaming. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds.) DASFAA 2019. LNCS, vol. 11448, pp. 200–212. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18590-9_14
Acknowledgements
The authors would like to thank the Spanish Ministry of Science, Innovation and Universities for the support under project TIN2017-88209-C2.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Melgar-García, L., Gutiérrez-Avilés, D., Rubio-Escudero, C., Troncoso, A. (2021). Nearest Neighbors-Based Forecasting for Electricity Demand Time Series in Streaming. In: Alba, E., et al. Advances in Artificial Intelligence. CAEPIA 2021. Lecture Notes in Computer Science(), vol 12882. Springer, Cham. https://doi.org/10.1007/978-3-030-85713-4_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-85713-4_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85712-7
Online ISBN: 978-3-030-85713-4
eBook Packages: Computer ScienceComputer Science (R0)