Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Demand Forecasting for an Automotive Company with Neural Network and Ensemble Classifiers Approaches

  • Conference paper
  • First Online:
Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems (APMS 2021)

Abstract

This work proposes the development and testing of three machine learning technique for demand forecasting in the automotive industry: Artificial Neural Network (ANN) and two types of Ensemble Learning models, i.e. AdaBoost and Gradient Boost. These models demonstrate the great potential that machine learning has over traditional demand forecasting methods. These three models will be compared to each other on the basis of the coefficient of determination R2 and it will be shown which model has the greatest accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Salais, T., Saucedo, J., Rodriguez Aguilar, R., Vela-Haro, J.: Demand prediction using a soft-computing approach: a case study of automotive industry. Appl. Sci. 10(3), 829 (2020)

    Article  Google Scholar 

  2. Bottani, E., Tebaldi, L., Pindari, S.: Demand forecasting in an automotive company: an artificial neural network approach. In: Affenzeller, M., et al. (eds.) The 31st European Modeling & Simulation Symposium, vol. 1, pp. 162–167 (2019)

    Google Scholar 

  3. Shahrabi, J., Mousavi, S.S., Heydar, M.: Supply chain demand forecasting: a comparison of machine learning techniques and traditional methods. J. Appl. Sci. 9(3), 521–527 (2009)

    Article  Google Scholar 

  4. González Vergas, C.A., Cortés, M.E.: Automobile spare-parts forecasting: a comparative study of time series methods. Int. J. Automot. Mech. Eng. 14(1), 3898–3912 (2017)

    Article  Google Scholar 

  5. Heo, J., Yang, J.: AdaBoost based bankruptcy forecasting of Korean construction companies. Appl. Soft Comput. 24, 494–499 (2014)

    Article  Google Scholar 

  6. Wisesa, O., Adriansyah, A., Osamah, I., Khalaf, O.: Prediction analysis sales for corporate services telecommunications company using gradient boost algorithm. In: Adriansyah, A. (ed.) 2nd International Conference on Broadband Communications, Wireless Sensors and Powering, vol. 1, pp. 101–106 (2020)

    Google Scholar 

  7. Blum, C., Socha, K.: Training feed-forward neural networks with ant colony optimization: an application to pattern classification. In: Gomide, F. (ed.) 5th International Conference on Hybrid Intelligent Systems, IEEE, vol. 1, pp. 233–238 (2005)

    Google Scholar 

  8. Freund, Y., Schapire, R.E.: A Decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  Google Scholar 

  9. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)

    Article  MathSciNet  Google Scholar 

  10. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eleonora Bottani , Monica Mordonini , Beatrice Franchi or Mattia Pellegrino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bottani, E., Mordonini, M., Franchi, B., Pellegrino, M. (2021). Demand Forecasting for an Automotive Company with Neural Network and Ensemble Classifiers Approaches. In: Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems. APMS 2021. IFIP Advances in Information and Communication Technology, vol 630. Springer, Cham. https://doi.org/10.1007/978-3-030-85874-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85874-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85873-5

  • Online ISBN: 978-3-030-85874-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics