Abstract
This paper presents FedMDR, a federated model distillation framework with a novel, robust aggregation mechanism that exploits transfer learning and knowledge distillation. FedMDR adopts a weighted geometric-median-based aggregation with trimmed prediction accuracy on the server-side, which orchestrates communication-efficient training on both heterogeneous model architectures and non-i.i.d. data. The aggregation provides resilience to sharp accuracy drop of corrupted models. We also extend FedMDR to support differential privacy by adding Gaussian noise to the aggregated consensus. Results show that FedMDR achieves significant robustness gain and satisfactory accuracy, and outperforms the existing techniques.
This work was supported by Zhejiang Lab (No. 2019KB0AB05), and National Natural Science Foundation of China (No. 61972100 and No. 61772367).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Phong, L.T., Aono, Y., Hayashi, T., Wang, L., Moriai, S.: Privacy-preserving deep learning: revisited and enhanced. In: Batten, L., Kim, D.S., Zhang, X., Li, G. (eds.) ATIS 2017. CCIS, vol. 719, pp. 100–110. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-5421-1_9
Blanchard, P., Guerraoui, R., Stainer, J., et al.: Machine learning with adversaries: Byzantine tolerant gradient descent. In: Advances in Neural Information Processing Systems, pp. 119–129 (2017)
Chen, F., Dong, Z., Li, Z., He, X.: Federated meta-learning for recommendation. arXiv preprint arXiv:1802.07876 (2018)
Chen, Y., Su, L., Xu, J.: Distributed statistical machine learning in adversarial settings: Byzantine gradient descent. Proc. ACM Measur. Anal. Comput. Syst. 1(2), 1–25 (2017)
Corinzia, L., Buhmann, J.M.: Variational federated multi-task learning. arXiv preprint arXiv:1906.06268 (2019)
Dong, J., et al.: ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J. Cheminformatics 10(1), 29 (2018)
Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)
Jeong, E., Oh, S., Kim, H., Park, J., Bennis, M., Kim, S.L.: Communication-efficient on-device machine learning: Federated distillation and augmentation under non-IID private data. arXiv preprint arXiv:1811.11479 (2018)
Kang, J., Xiong, Z., Niyato, D., Yu, H., Liang, Y.C., Kim, D.I.: Incentive design for efficient federated learning in mobile networks: a contract theory approach. In: 2019 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS), pp. 1–5. IEEE (2019)
Li, D., Wang, J.: FedMD: heterogenous federated learning via model distillation. arXiv preprint arXiv:1910.03581 (2019)
Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions. IEEE Sig. Process. Mag. 37(3), 50–60 (2020)
Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127 (2018)
Lin, T., Kong, L., Stich, S.U., Jaggi, M.: Ensemble distillation for robust model fusion in federated learning. arXiv preprint arXiv:2006.07242 (2020)
McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)
Mironov, I.: Rényi differential privacy. In: 2017 IEEE 30th Computer Security Foundations Symposium (CSF), pp. 263–275. IEEE (2017)
Nishio, T., Yonetani, R.: Client selection for federated learning with heterogeneous resources in mobile edge. In: ICC 2019–2019 IEEE International Conference on Communications (ICC), pp. 1–7. IEEE (2019)
Pantelopoulos, A., Bourbakis, N.G.: A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 40(1), 1–12 (2009)
Pillutla, K., Kakade, S.M., Harchaoui, Z.: Robust aggregation for federated learning. arXiv preprint arXiv:1912.13445 (2019)
Sattler, F., Marban, A., Rischke, R., Samek, W.: Communication-efficient federated distillation. arXiv preprint arXiv:2012.00632 (2020)
Smith, V., Chiang, C.K., Sanjabi, M., Talwalkar, A.S.: Federated multi-task learning. In: Advances in Neural Information Processing Systems, pp. 4424–4434 (2017)
Sun, L., Lyu, L.: Federated model distillation with noise-free differential privacy. arXiv preprint arXiv:2009.05537 (2020)
Torrey, L., Shavlik, J.: Transfer learning. In: Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques, pp. 242–264. IGI global (2010)
Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)
Yang, T., et al.: Applied federated learning: improving google keyboard query suggestions. arXiv preprint arXiv:1812.02903 (2018)
Yin, D., Chen, Y., Ramchandran, K., Bartlett, P.: Byzantine-robust distributed learning: towards optimal statistical rates. arXiv preprint arXiv:1803.01498 (2018)
Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with non-IID data. arXiv preprint arXiv:1806.00582 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Mi, Y., Mu, Y., Zhou, S., Guan, J. (2021). FedMDR: Federated Model Distillation with Robust Aggregation. In: U, L.H., Spaniol, M., Sakurai, Y., Chen, J. (eds) Web and Big Data. APWeb-WAIM 2021. Lecture Notes in Computer Science(), vol 12859. Springer, Cham. https://doi.org/10.1007/978-3-030-85899-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-85899-5_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85898-8
Online ISBN: 978-3-030-85899-5
eBook Packages: Computer ScienceComputer Science (R0)