Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Faster-LTN: A Neuro-Symbolic, End-to-End Object Detection Architecture

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2021 (ICANN 2021)

Abstract

The detection of semantic relationships between objects represented in an image is one of the fundamental challenges in image interpretation. Neural-Symbolic techniques, such as Logic Tensor Networks (LTNs), allow the combination of semantic knowledge representation and reasoning with the ability to efficiently learn from examples typical of neural networks. We here propose Faster-LTN, an object detector composed of a convolutional backbone and an LTN. To the best of our knowledge, this is the first attempt to combine both frameworks in an end-to-end training setting. This architecture is trained by optimizing a grounded theory which combines labelled examples with prior knowledge, in the form of logical axioms. Experimental comparisons show competitive performance with respect to the traditional Faster R-CNN architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aditya, S., Yang, Y., Baral, C.: Integrating knowledge and reasoning in image understanding. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019, pp. 6252–6259 (2019)

    Google Scholar 

  2. Raedt, L.D., Dumančić, S., Manhaeve, R., Marra, G.: From statistical relational to neuro-symbolic artificial intelligence. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, pp. 4943–4950 (2020)

    Google Scholar 

  3. Donadello, I., Serafini, L., Garcez, A.D.: Logic tensor networks for semantic image interpretation. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 1596–1602. AAAI Press (2017)

    Google Scholar 

  4. Badreddine, S., Garcez, A.d., Serafini, L., Spranger, M.: Logic tensor networks. ArXiv abs/2012.13635 (2020)

    Google Scholar 

  5. Donadello, I., Serafini, L.: Compensating supervision incompleteness with prior knowledge in semantic image interpretation. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2019)

    Google Scholar 

  6. Shanahan, M., Nikiforou, K., Creswell, A., Kaplanis, C., Barrett, D., Garnelo, M.: An explicitly relational neural network architecture. In: Proceedings of the 37th International Conference on Machine Learning, vol. 119, pp. 8593–8603. PMLR (2020)

    Google Scholar 

  7. Lamb, L.C., Garcez, A.D., Gori, M., Prates, M.O., Avelar, P.H., Vardi, M.Y.: Graph neural networks meet neural-symbolic computing: a survey and perspective. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, pp. 4877–4884 (2020)

    Google Scholar 

  8. Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., Tenenbaum, J.B.: Neural-symbolic VQA: disentangling reasoning from vision and language understanding. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 1039–1050. Curran Associates Inc. (2018)

    Google Scholar 

  9. Besold, T.R., et al.: Neural-symbolic learning and reasoning: a survey and interpretation. ArXiv abs/1711.03902 (2017)

    Google Scholar 

  10. Garcez, A., Gori, M., Lamb, L., Serafini, L., Spranger, M., Tran, S.: Neural-symbolic computing: an effective methodology for principled integration of machine learning and reasoning. FLAP 6, 611–632 (2019)

    MathSciNet  Google Scholar 

  11. Zhu, Y., Fathi, A., Fei-Fei, L.: Reasoning about object affordances in a knowledge base representation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 408–424. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_27

    Chapter  Google Scholar 

  12. Lu, C., Krishna, R., Bernstein, M., Fei-Fei, L.: Visual relationship detection with language priors. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 852–869. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_51

    Chapter  Google Scholar 

  13. Marino, K., Salakhutdinov, R., Gupta, A.: The more you know: using knowledge graphs for image classification. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20–28 (2017)

    Google Scholar 

  14. van Krieken, E., Acar, E., Harmelen, F.V.: Analyzing differentiable fuzzy logic operators. ArXiv abs/2002.06100 (2020)

    Google Scholar 

  15. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  16. Dutta, S., Basu, S., Chakraborty, M.K.: Many-valued logics, fuzzy logics and graded consequence: a comparative appraisal. In: Logic and its Applications, pp. 197–209 (2013)

    Google Scholar 

  17. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2999–3007 (2017)

    Google Scholar 

  18. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2010 (VOC2010) Results (2010)

    Google Scholar 

  19. Chen, X., Mottaghi, R., Liu, X., Fidler, S., Urtasun, R., Yuille, A.: Detect what you can: Detecting and representing objects using holistic models and body parts. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1971–1978 (2014)

    Google Scholar 

  20. Cartucho, J., Ventura, R., Veloso, M.: Robust object recognition through symbiotic deep learning in mobile robots. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2336–2341 (2018)

    Google Scholar 

Download references

Acknolewdgement

The authors wish to thank Ivan Donadello for the helpful discussions. Computational resources were in part provided by HPC@POLITO, a project of Academic Computing at Politecnico di Torino (http://www.hpc.polito.it).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lia Morra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manigrasso, F., Miro, F.D., Morra, L., Lamberti, F. (2021). Faster-LTN: A Neuro-Symbolic, End-to-End Object Detection Architecture. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021. Lecture Notes in Computer Science(), vol 12892. Springer, Cham. https://doi.org/10.1007/978-3-030-86340-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86340-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86339-5

  • Online ISBN: 978-3-030-86340-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics