Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Radiological Identification of Hip Joint Centers from X-ray Images Using Fast Deep Stacked Network and Dynamic Registration Graph

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2021 (ICANN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12893))

Included in the following conference series:

  • 2670 Accesses

Abstract

Locating the hip joint center (HJC) from X-ray images is frequently required for the evaluation of hip dysplasia. Existing state-of-the-art methods focus on developing functional methods or regression equations with some radiographic landmarks. Such developments employ shallow networks or single equations to locate the HJC, and little attention has been given to deep stacked networks. In addition, existing methods ignore the connections between static and dynamic landmarks, and their prediction capacity is limited. This paper proposes an innovative hybrid framework for HJC identification. The proposed method is based on fast deep stacked network (FDSN) and dynamic registration graph with four improvements: (1) an anatomical landmark extraction module obtains comprehensive prominent bony landmarks from multipose X-ray images; (2) an attribute optimization module based on grey relational analysis (GRA) guides the network to focus on useful external anatomical landmarks; (3) a multiverse optimizer (MVO) module appended to the framework automatically and efficiently determines the optimal model parameters; and (4) the dynamic fitting and two-step registration approach are integrated into the model to further improve the accuracy of HJC localization. By integrating the above improvements in series, the models’ performances are gradually enhanced. Experimental results show that our model achieves superior results to existing HJC prediction approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Harrington, M.E., Zavatsky, A.B., Lawson, S.E.M., Yuan, Z., Theologis, T.N.: Prediction of the hip joint centre in adults, children, and patients with cerebral palsy based on magnetic resonance imaging. J. Biomech. 40(3), 595–602 (2007)

    Article  Google Scholar 

  2. Mose, K.: Methods of measuring in Legg-Calvé-Perthes disease with special regard to the prognosis. Clin. Orthop. Relat. Res. 150, 103–109 (1980)

    Google Scholar 

  3. Cuomo, A.V., Moseley, C.F., Fedorak, G.T.: A practical approach to determining the center of the femoral head in subluxated and dislocated hips. J. Pediatr. Orthop. 35(6), 556–560 (2015)

    Article  Google Scholar 

  4. Piazza, S.J., Erdemir, A., Okita, N., Cavanagh, P.R.: Assessment of the functional method of hip joint center location subject to reduced range of hip motion. J. Biomech. 37(3), 349–356 (2004)

    Article  Google Scholar 

  5. Camomilla, V., Cereatti, A., Vannozzi, G., Cappozzo, A.: An optimized protocol for hip joint centre determination using the functional method. J. Biomech. 39(6), 1096–1106 (2006)

    Article  Google Scholar 

  6. Silaghi, M.-C., Plänkers, R., Boulic, R., Fua, P., Thalmann, D.: Local and global skeleton fitting techniques for optical motion capture. In: Magnenat-Thalmann, N., Thalmann, D. (eds.) CAPTECH 1998. LNCS (LNAI), vol. 1537, pp. 26–40. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49384-0_3

    Chapter  Google Scholar 

  7. Gamage, S.S.H.U., Lasenby, J.: New least squares solutions for estimating the average centre of rotation and the axis of rotation. J. Biomech. 35(1), 87–93 (2002)

    Article  Google Scholar 

  8. Halvorsen, K., Lesser, M., Lundberg, A.: A new method for estimating the axis of rotation and the center of rotation. J. Biomech. 32(11), 1221–1227 (1999)

    Article  Google Scholar 

  9. Assi, A., et al.: Validation of hip joint center localization methods during gait analysis using 3D EOS imaging in typically developing and cerebral palsy children. Gait Posture 48, 30–35 (2016)

    Article  Google Scholar 

  10. Sangeux, M., Pillet, H., Skalli, W.: Which method of hip joint centre localisation should be used in gait analysis? Gait Posture 40(1), 20–25 (2014)

    Article  Google Scholar 

  11. Peters, A., Baker, R., Morris, M.E., Sangeux, M.: A comparison of hip joint centre localisation techniques with 3-DUS for clinical gait analysis in children with cerebral palsy. Gait Posture 36(2), 282–286 (2012)

    Article  Google Scholar 

  12. Miller, E.J., Kaufman, K.R.: Verification of an improved hip joint center prediction method. Gait Posture 59, 174–176 (2018)

    Article  Google Scholar 

  13. Sangeux, M.: On the implementation of predictive methods to locate the hip joint centres. Gait Posture 42(3), 402–405 (2015)

    Article  Google Scholar 

  14. Sangeux, M., Peters, A., Baker, R.: Hip joint centre localization: evaluation on normal subjects in the context of gait analysis. Gait Posture 34(3), 324–328 (2011)

    Article  Google Scholar 

  15. Bombaci, H., Simsek, B., Soyarslan, M., Murat Yildirim, M.: Determination of the hip rotation centre from landmarks in pelvic radiograph. Acta Orthop. Traumatol. Turc. 51(6), 470–473 (2017)

    Article  Google Scholar 

  16. Wang, X., et al.: Obstructive sleep apnea detection using ecg-sensor with convolutional neural networks. Multimedia Tools Appl. 79(23), 15813–15827 (2020)

    Article  Google Scholar 

  17. Shi, W., Liu, S., Jiang, F., Zhao, D., Tian, Z.: Anchored neighborhood deep network for single-image super-resolution. EURASIP J. Image Video Process. 2018(1), 34 (2018)

    Article  Google Scholar 

  18. Jiang, F., et al.: Medical image semantic segmentation based on deep learning. Neural Comput. Appl. 29(5), 1257–1265 (2018)

    Article  Google Scholar 

  19. Mirjalili, S., Mirjalili, S.M., Hatamlou, A.: Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput. Appl. 27(2), 495–513 (2015). https://doi.org/10.1007/s00521-015-1870-7

    Article  Google Scholar 

  20. Sun, G., Xin, G., Xiao, Y., Zheng, Z.: Grey relational analysis between hesitant fuzzy sets with applications to pattern recognition. Exp. Syst. Appl. 92(9), 521–532 (2018)

    Article  Google Scholar 

  21. Huang, G., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybernet. Part B (Cybernet.) 42(2), 513–529 (2012)

    Article  Google Scholar 

  22. da Silva, B.L.S., Inaba, F.K., Salles, E.O.T., Ciarelli, P.M.: Fast deep stacked networks based on extreme learning machine applied to regression problems. Neural Netw. 131, 14–28 (2020)

    Article  Google Scholar 

  23. Goshtasby, A.: Image registration by local approximation methods. Image Vis. Comput. 6(4), 255–261 (1988)

    Article  Google Scholar 

  24. Yuan-Chu, C., Wei-Min, Q., Wei-You, C.: Dynamic properties of Elman and modified Elman neural network. In: Proceedings of the International Conference on Machine Learning and Cybernetics, pp. 637–640 (2002)

    Google Scholar 

  25. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput. 3(2), 246–257 (1991)

    Article  Google Scholar 

  26. Deng, W., Zheng, Q., Chen, L.: Regularized extreme learning machine. In: 2009 IEEE Symposium on Computational Intelligence and Data Mining, pp. 389–395 (2009)

    Google Scholar 

  27. Zhou, H., Huang, G., Lin, Z., Wang, H., Soh, Y.C.: Stacked extreme learning machines. IEEE Trans. Cybernet. 45(9), 2013–2025 (2015)

    Article  Google Scholar 

  28. Li, D.: A tutorial survey of architectures, algorithms, and applications for deep learning. Apsipa Trans. Signal Inf. Process. 3, e2 (2014)

    Article  Google Scholar 

  29. Fujii, M., Nakamura, T., Hara, T., Nakashima, Y.: Is Ranawat triangle method accurate in estimating hip joint center in Japanese population? J. Orthop. Sci. 26(2), 219–224 (2021)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No.61772556), National Key R&D Program of China (No.2018YFB1107100, No.2016 YFC1100600), Postgraduate Research and Innovation Project of Hunan (No.CX20200321) and Fundamental Research Funds for the Central Universities of Central South University (2020zzts140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenghui Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, F., Liao, S., Wu, R., Liu, S., Zhao, Y., Shen, X. (2021). Radiological Identification of Hip Joint Centers from X-ray Images Using Fast Deep Stacked Network and Dynamic Registration Graph. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021. Lecture Notes in Computer Science(), vol 12893. Springer, Cham. https://doi.org/10.1007/978-3-030-86365-4_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86365-4_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86364-7

  • Online ISBN: 978-3-030-86365-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics