Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Interesting Receptive Region and Feature Excitation for Partial Person Re-identification

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2021 (ICANN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12894))

Included in the following conference series:

  • 2392 Accesses

Abstract

Partial person ReID tasks have become a research focus recently for it is challenging but significant in practical applications. The major difficulty within partial person ReID is that only incomplete and even noisy person features are available for extraction and matching, which puts forward higher requirement to model robustness. To settle down this problem, our paper proposes a novel IRRFE-ReID model, which includes two major innovations, the interesting receptive region selection module and the feature excitation module. The former module can adaptively select the region of interest from original image while the latter one is applied to distinguish representative person features and weight them during matching. Proven by ablation analysis, these two modules are embeddable and considerably conducive for partial person ReID tasks. Additionally, our IRRFE-ReID model achieves the state-of-the-art performance in two mainstream partial person datasets, PartialReID and PartialiLids, with its Rank1 reaching 85.7% and 74.8% respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gong, S., et al.: Person re-identification. Adv. Comput. Vis. Pattern Recognit. 42(7), 301–313 (2014)

    Google Scholar 

  2. Leng, Q., Ye, M., Tian, Q.: A survey of open-world person re-identification. IEEE Trans. Circuits Syst. Video Technol. 30(4), 1092–1108 (2019)

    Article  Google Scholar 

  3. Zheng, L., Yang, Y., Hauptmann, A.G.: Person re-identification: past, present and future (2016)

    Google Scholar 

  4. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: 2017 IEEE International Conference on Image Processing (ICIP) (2017)

    Google Scholar 

  5. Cai, H., Wang, Z., Cheng, J.: Multi-scale body-part mask guided attention for person re-identification. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2020)

    Google Scholar 

  6. Zhang, Z., et al.: Densely semantically aligned person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  7. Jin, X., et al.: Semantics-aligned representation learning for person re-identification (2020)

    Google Scholar 

  8. He, L., et al.: Fastreid: a pytorch toolbox for general instance re-identification. arXiv preprint arXiv:2006.02631 6(7), 8 (2020)

  9. Wang, G.A., et al.: High-order information matters: learning relation and topology for occluded person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  10. Zhu, S., et al.: Partial person re-identification with two-stream network and reconstruction. Neurocomputing 398, 453–459 (2020)

    Article  Google Scholar 

  11. Gao, L., et al.: Texture semantically aligned with visibility-aware for partial person re-identification. In: Proceedings of the 28th ACM International Conference on Multimedia (2020)

    Google Scholar 

  12. Gao, Z., et al.: DCR: a unified framework for holistic/partial person ReID. IEEE Trans. Multimedia (2020)

    Google Scholar 

  13. Luo, H., et al.: Stnreid: deep convolutional networks with pairwise spatial transformer networks for partial person re-identification. IEEE Trans. Multimedia 22(11), 2905–2913 (2020)

    Article  Google Scholar 

  14. Kortylewski, A., et al.: Compositional convolutional neural networks: a deep architecture with innate robustness to partial occlusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  15. Kortylewski, A., et al.: Compositional convolutional neural networks: a robust and interpretable model for object recognition under occlusion. Int. J. Comput. Vis. 1–25 (2020)

    Google Scholar 

  16. Jia, W., et al.: Detection and segmentation of overlapped fruits based on optimized mask R-CNN application in apple harvesting robot. Comput. Electron. Agri. 172, 105380 (2020)

    Google Scholar 

  17. Yang, Q., et al.: Focus on the visible regions: semantic-guided alignment model for occluded person re-identification. Sensors 20(16), 4431 (2020)

    Article  Google Scholar 

  18. Han, C., Gao, C., Sang, N.: Keypoint-based feature matching for partial person re-identification. In: 2020 IEEE International Conference on Image Processing (ICIP). IEEE (2020)

    Google Scholar 

  19. Ye, M., et al.: Deep learning for person re-identification: a survey and outlook. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  20. Lawen, H., et al.: Compact network training for person ReID. In: Proceedings of the 2020 International Conference on Multimedia Retrieval (2020)

    Google Scholar 

  21. Pathak, P.: Fine-grained re-identification. arXiv preprint arXiv:2011.13475 (2020)

  22. Chen, Q., Zhang, W., Fan, J.: Cluster-level feature alignment for person re-identification. arXiv preprint arXiv:2008.06810 (2020)

  23. Zhuo, J., et al.: Occluded person re-identification. In: 2018 IEEE International Conference on Multimedia and Expo (ICME). IEEE (2018)

    Google Scholar 

  24. Zhuo, J., Lai, J., Chen, P.: A novel teacher-student learning framework for occluded person re-identification. arXiv preprint arXiv:1907.03253 (2019)

  25. Zheng, W.-S., Gong, S., Xiang, T.: Person re-identification by probabilistic relative distance comparison. In: CVPR 2011. IEEE (2011)

    Google Scholar 

  26. Saghafi, M.A., et al.: Review of person re-identification techniques. IET Comput. Vis. 8(6), 455–474 (2014)

    Article  Google Scholar 

  27. Liao, S., et al.: Person re-identification by local maximal occurrence representation and metric learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  28. Ma, B., Su, Y., Jurie, F.: Covariance descriptor based on bio-inspired features for person re-identification and face verification. Image Vis. Comput. 32(6–7), 379–390 (2014)

    Article  Google Scholar 

  29. Yang, Y., Yang, J., Yan, J., Liao, S., Yi, D., Li, S.Z.: Salient color names for person re-identification. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 536–551. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_35

    Chapter  Google Scholar 

  30. Sun, K., et al.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  31. Cao, Z., et al.: OpenPose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43(1), 172–186 (2019)

    Article  Google Scholar 

  32. Wang, R., Yan, J., Yang, X.: Learning combinatorial embedding networks for deep graph matching. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2019)

    Google Scholar 

  33. Zanfir, A., Sminchisescu, C.: Deep learning of graph matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  34. Caetano, T.S., et al.: Learning graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 1048–1058 (2009)

    Article  Google Scholar 

  35. Gao, Z., et al.: Deep spatial pyramid features collaborative reconstruction for partial person ReID. In: Proceedings of the 27th ACM International Conference on Multimedia (2019)

    Google Scholar 

  36. Miao, J., et al.: Pose-guided feature alignment for occluded person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2019)

    Google Scholar 

  37. Sun, Y., et al.: Perceive where to focus: Learning visibility-aware part-level features for partial person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  38. Sun, Y., Zheng, L., Yang, Y., Tian, Q., Wang, S.: Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline). In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 501–518. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_30

    Chapter  Google Scholar 

  39. Li, J., et al.: Crowdpose: efficient crowded scenes pose estimation and a new benchmark. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019.)

    Google Scholar 

  40. Zhong, Y., Wang, X., Zhang, S.: Robust partial matching for person search in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  41. Fu, Y., et al.: Horizontal pyramid matching for person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence (2019)

    Google Scholar 

  42. Zheng, W.-S., et al.: Partial person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  43. He, L., et al.: Deep spatial feature reconstruction for partial person re-identification: alignment-free approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  44. Tan, H., et al.: Incomplete descriptor mining with elastic loss for person re-identification. IEEE Trans. Circuits Syst. Video Technol. (2021)

    Google Scholar 

  45. Gao, S., et al.: Pose-guided visible part matching for occluded person ReID. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  46. Tan, H., et al.: MHSA-Net: multi-head self-attention network for occluded person re-identification. arXiv preprint arXiv:2008.04015 (2020)

  47. He, L., et al.: Recognizing partial biometric patterns. arXiv preprint arXiv:1810.07399 (2018)

  48. He, L., et al.: Foreground-aware pyramid reconstruction for alignment-free occluded person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2019)

    Google Scholar 

  49. Miao, J., Wu, Y., Yang, Y.: Identifying visible parts via pose estimation for occluded person re-identification. IEEE Trans. Neural Netw. Learn. Syst. (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Te Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meng, Q., Li, T., Ji, S., Zhu, S., Gu, J. (2021). Interesting Receptive Region and Feature Excitation for Partial Person Re-identification. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021. Lecture Notes in Computer Science(), vol 12894. Springer, Cham. https://doi.org/10.1007/978-3-030-86380-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86380-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86379-1

  • Online ISBN: 978-3-030-86380-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics