Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Bures Metric for Generative Adversarial Networks

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Research Track (ECML PKDD 2021)

Abstract

Generative Adversarial Networks (GANs) are performant generative methods yielding high-quality samples. However, under certain circumstances, the training of GANs can lead to mode collapse or mode dropping. To address this problem, we use the last layer of the discriminator as a feature map to study the distribution of the real and the fake data. During training, we propose to match the real batch diversity to the fake batch diversity by using the Bures distance between covariance matrices in this feature space. The computation of the Bures distance can be conveniently done in either feature space or kernel space in terms of the covariance and kernel matrix respectively. We observe that diversity matching reduces mode collapse substantially and has a positive effect on sample quality. On the practical side, a very simple training procedure is proposed and assessed on several data sets.

M. Fanuelā€”Most of this work was done when MF was at KU Leuven.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For simplicity, we omit the normalization by \(\frac{1}{b-1}\) in front of the covariance matrix.

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Proceedings of the 34th International Conference on Machine Learning (ICML) (2017)

    Google ScholarĀ 

  2. Bhatia, R., Jain, T., Lim, Y.: On the Bures-Wasserstein distance between positive definite matrices. Expositiones Mathematicae 37(2), 165ā€“191 (2019)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  3. Binkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying MMD GANs. In: Proceedings of the International Conference on Learning Representations (ICLR) (2018)

    Google ScholarĀ 

  4. Che, T., Li, Y., Jacob, A.P., Bengio, Y., Li, W.: Mode regularized generative adversarial networks. In: Proceedings of the International Conference on Learning Representations (ICLR) (2017)

    Google ScholarĀ 

  5. Dieng, A.B., Ruiz, F.J.R., Blei, D.M., Titsias, M.K.: Prescribed generative adversarial networks. arxiv:1910.04302 (2020)

  6. Dowson, D., Landau, B.: The FrĆ©chet distance between multivariate normal distributions. J. Multivar. Anal. 12(3), 450ā€“455 (1982)

    ArticleĀ  Google ScholarĀ 

  7. Elfeki, M., Couprie, C., Riviere, M., Elhoseiny, M.: GDPP: learning diverse generations using determinantal point processes. In: Proceedings of the 36th International Conference on Machine Learning (ICML) (2019)

    Google ScholarĀ 

  8. Gelbrich, M.: On a formula for the L2 Wasserstein metric between measures on Euclidean and Hilbert spaces. Mathematische Nachrichten 147(1), 185ā€“203 (1990)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  9. Ghosh, A., Kulharia, V., Namboodiri, V.P., Torr, P.H., Dokania, P.K.: Multi-agent diverse generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google ScholarĀ 

  10. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google ScholarĀ 

  11. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, vol. 31 (2017)

    Google ScholarĀ 

  12. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google ScholarĀ 

  13. Hong, Y., Horn, R.A.: The Jordan canonical form of a product of a Hermitian and a positive semidefinite matrix. Linear Algebra Appl. 147, 373ā€“386 (1991)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  14. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: Proceedings of the International Conference on Learning Representations (ICLR) (2017)

    Google ScholarĀ 

  15. Kingma, D.P., Ba, J.: Adam: a Method for Stochastic Optimization. In: Proceedings of the International Conference on Learning Representations (ICLR) (2015)

    Google ScholarĀ 

  16. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: Proceedings of the International Conference on Learning Representations (ICLR) (2014)

    Google ScholarĀ 

  17. Lee, K.S., Tran, N.T., Cheung, N.M.: InfoMax-GAN: mutual information maximization for improved adversarial image generation. In: NeurIPS 2019 Workshop on Information Theory and Machine Learning (2019)

    Google ScholarĀ 

  18. Li, C.L., Chang, W.C., Cheng, Y., Yang, Y., Poczos, B.: MMD GAN: towards deeper understanding of moment matching network. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google ScholarĀ 

  19. Lin, Z., Khetan, A., Fanti, G., Oh, S.: PacGAN: the power of two samples in generative adversarial networks. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google ScholarĀ 

  20. Lucic, M., Kurach, K., Michalski, M., Gelly, S., Bousquet, O.: Are GANs created equal? A large-scale study. In: Advances in Neural Information Processing Systems, pp. 700ā€“709 (2018)

    Google ScholarĀ 

  21. Massart, E., Absil, P.A.: Quotient geometry with simple geodesics for the manifold of fixed-rank positive-semidefinite matrices. SIAM J. Matrix Anal. Appl. 41(1), 171ā€“198 (2020)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  22. Mescheder, L., Nowozin, S., Geiger, A.: The numerics of GANs. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, p. 1823ā€“1833 (2017)

    Google ScholarĀ 

  23. Metz, L., Poole, B., Pfau, D., Sohl-Dickstein, J.: Unrolled generative adversarial networks. In: Proceedings of the International Conference on Learning Representations (ICLR) (2017)

    Google ScholarĀ 

  24. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. In: Proceedings of the International Conference on Learning Representations (ICLR) (2018)

    Google ScholarĀ 

  25. Mroueh, Y., Sercu, T., Goel, V.: McGan: mean and covariance feature matching GAN. In: Proceedings of the 34th International Conference on Machine Learning (ICML) (2017)

    Google ScholarĀ 

  26. Nguyen, T., Le, T., Vu, H., Phung, D.: Dual discriminator generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google ScholarĀ 

  27. Oh, J.H., Pouryahya, M., Iyer, A., Apte, A.P., Deasy, J.O., Tannenbaum, A.: A novel kernel Wasserstein distance on Gaussian measures: an application of identifying dental artifacts in head and neck computed tomography. Comput. Biol. Med. 120, 103731 (2020)

    ArticleĀ  Google ScholarĀ 

  28. PeyrĆ©, G., Cuturi, M., et al.: Computational optimal transport. Found. Trends Mach. Learn. 11(5ā€“6), 355ā€“607 (2019)

    ArticleĀ  Google ScholarĀ 

  29. Peyre, R.: Comparison between \(W_2\) distance and \(H^{-1}\) norm, and localization of Wasserstein distance. ESAIM: COCV 24(4), 1489ā€“1501 (2018)

    MATHĀ  Google ScholarĀ 

  30. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: Proceedings of the International Conference on Learning Representations (ICLR) (2016)

    Google ScholarĀ 

  31. Ren, Y., Zhu, J., Li, J., Luo, Y.: Conditional Generative Moment-Matching Networks. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google ScholarĀ 

  32. Rezende, D.J., Mohamed, S.: Variational inference with normalizing flows. In: Proceedings of the 32th International Conference on Machine Learning (ICML) (2015)

    Google ScholarĀ 

  33. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google ScholarĀ 

  34. Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data distribution. In: Advances in Neural Information Processing Systems, pp. 11918ā€“11930 (2019)

    Google ScholarĀ 

  35. Srivastava, A., Valkov, L., Russell, C., Gutmann, M.U., Sutton, C.: VEEGAN: reducing mode collapse in GANs using implicit variational learning. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google ScholarĀ 

  36. Wang, W., Sun, Y., Halgamuge, S.: Improving MMD-GAN training with repulsive loss function. In: Proceedings of the International Conference on Learning Representations (ICLR) (2019)

    Google ScholarĀ 

  37. Wu, J., Huang, Z., Thoma, J., Acharya, D., Van Gool, L.: Wasserstein divergence for GANs. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 673ā€“688. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_40

    ChapterĀ  Google ScholarĀ 

  38. Xiao, C., Zhong, P., Zheng, C.: BourGAN: generative networks with metric embeddings. In: Advances in Neural Information Processing Systems, vol. 32 (2018)

    Google ScholarĀ 

  39. Zhang, H., Zhang, Z., Odena, A., Lee, H.: Consistency regularization for generative adversarial networks. In: Proceedings of the International Conference on Learning Representations (ICLR) (2020)

    Google ScholarĀ 

Download references

Acknowledgements

EU: The research leading to these results has received funding from the European Research Council under the European Unionā€™s Horizon 2020 research and innovation program/ERC Advanced Grants (787960, 885682). This paper reflects only the authorsā€™ views and the Union is not liable for any use that may be made of the contained information. Research Council KUL: Optimization frameworks for deep kernel machines C14/18/068, projects C16/15/059, C3/19/053, C24/18/022, C3/20/117), Industrial Research Fund (Fellowships 13-0260, IOF/16/004) and several Leuven Research and Development bilateral industrial projects; Flemish Government: FWO: projects: GOA4917N (Deep Restricted Kernel Machines: Methods and Foundations), EOS Project no G0F6718N (SeLMA), SBO project S005319N, Infrastructure project I013218N, TBM Project T001919N; PhD Grants (SB/1SA1319N, SB/1S93918, SB/1S1319N), EWI: the Flanders AI Research Program. VLAIO: Baekeland PhD (HBC.20192204) and Innovation mandate (HBC.2019.2209), CoT project 2018.018. Other funding: Foundation ā€˜Kom op tegen Kankerā€™, CM (Christelijke Mutualiteit). Ford KU Leuven Research Alliance Project KUL0076 (Stability analysis and performance improvement of deep reinforcement learning algorithms).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes De Meulemeester .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8420 KB)

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Meulemeester, H., Schreurs, J., Fanuel, M., De Moor, B., Suykens, J.A.K. (2021). The Bures Metric for Generative Adversarial Networks. In: Oliver, N., PĆ©rez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2021. Lecture Notes in Computer Science(), vol 12976. Springer, Cham. https://doi.org/10.1007/978-3-030-86520-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86520-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86519-1

  • Online ISBN: 978-3-030-86520-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics