Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Neural Topic Models for Hierarchical Topic Detection and Visualization

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Research Track (ECML PKDD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12977))

Abstract

Given a corpus of documents, hierarchical topic detection aims to learn a topic hierarchy where the topics are more general at high levels of the hierarchy and they become more specific toward the low levels. In this paper, we consider the joint problem of hierarchical topic detection and document visualization. We propose a joint neural topic model that can not only detect topic hierarchies but also generate a visualization of documents and their topic structure. By being able to view the topic hierarchy and see how documents are visually distributed across the hierarchy, we can quickly identify documents and topics of interest with desirable granularity. We conduct both quantitative and qualitative experiments on real-world large datasets. The results show that our method produces a better hierarchical visualization of topics and documents while achieving competitive performance in hierarchical topic detection, as compared to state-of-the-art baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The source code is available at https://github.com/dangpnh2/htv.

  2. 2.

    r is Euclidean distance in our experiments.

  3. 3.

    In the experiments, we set \(a=b=0.01\).

  4. 4.

    https://mlg.ucd.ie/datasets/bbc.html.

  5. 5.

    https://ana.cachopo.org/datasets-for-single-label-text-categorization.

  6. 6.

    https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html.

  7. 7.

    https://data.mendeley.com/datasets/9rw3vkcfy4/6.

  8. 8.

    Its implementation is at https://github.com/akashgit/autoencoding_vi_for_topic_models.

  9. 9.

    We use the implementation at https://github.com/dangpnh2/plsv_vae.

  10. 10.

    We use the implementation at https://github.com/blei-lab/hlda.

  11. 11.

    We use the implementation at https://github.com/misonuma/tsntm.

  12. 12.

    https://github.com/DmitryUlyanov/Multicore-TSNE.

  13. 13.

    https://nlp.cs.nyu.edu/wikipedia-data/.

References

  1. Almars, A., Li, X., Zhao, X.: Modelling user attitudes using hierarchical sentiment-topic model. Data Knowl. Eng. 119, 139–149 (2019)

    Article  Google Scholar 

  2. Alvarez-Melis, D., Jaakkola, T.: Tree-structured decoding with doubly-recurrent neural networks. In: ICLR (2017)

    Google Scholar 

  3. Blei, D.M., Griffiths, T.L., Jordan, M.I.: The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies. J. ACM (JACM) 57(2), 1–30 (2010)

    Article  MathSciNet  Google Scholar 

  4. Blei, D.M., Griffiths, T.L., Jordan, M.I., Tenenbaum, J.B.: Hierarchical topic models and the nested Chinese restaurant process. In: Advances in Neural Information Processing Systems, vol. 16, no. 16, pp. 17–24 (2004)

    Google Scholar 

  5. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  6. Cardoso-Cachopo, A.: Improving methods for single-label text categorization. Ph.D. thesis, Instituto Superior Tecnico, Universidade Tecnica de Lisboa (2007)

    Google Scholar 

  7. Chen, Y., Zaki, M.J.: KATE: K-competitive autoencoder for text. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 85–94 (2017)

    Google Scholar 

  8. Choo, J., Lee, C., Reddy, C.K., Park, H.: UTOPIAN: user-driven topic modeling based on interactive nonnegative matrix factorization. IEEE Trans. Visual Comput. Graph. 19(12), 1992–2001 (2013)

    Article  Google Scholar 

  9. Greene, D., Cunningham, P.: Practical solutions to the problem of diagonal dominance in kernel document clustering. In: Proceedings of the 23rd International Conference on Machine learning (ICML 2006), pp. 377–384. ACM Press (2006)

    Google Scholar 

  10. Guo, D., Chen, B., Lu, R., Zhou, M.: Recurrent hierarchical topic-guided RNN for language generation. In: Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 3810–3821 (2020)

    Google Scholar 

  11. Isonuma, M., Mori, J., Bollegala, D., Sakata, I.: Tree-structured neural topic model. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 800–806 (2020)

    Google Scholar 

  12. Iwata, T., Yamada, T., Ueda, N.: Probabilistic latent semantic visualization: topic model for visualizing documents. In: KDD, pp. 363–371 (2008)

    Google Scholar 

  13. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31, 7–15 (1989)

    Article  MathSciNet  Google Scholar 

  14. Kataria, S.S., Kumar, K.S., Rastogi, R.R., Sen, P., Sengamedu, S.H.: Entity disambiguation with hierarchical topic models. In: KDD, pp. 1037–1045 (2011)

    Google Scholar 

  15. Kim, H., Drake, B., Endert, A., Park, H.: ArchiText: interactive hierarchical topic modeling. IEEE Trans. Visual. Comput. Graph. 27, 3644–3655 (2020)

    Article  Google Scholar 

  16. Kim, J.H., Kim, D., Kim, S., Oh, A.H.: Modeling topic hierarchies with the recursive Chinese restaurant process. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management (2012)

    Google Scholar 

  17. Kim, S., Zhang, J., Chen, Z., Oh, A., Liu, S.: A hierarchical aspect-sentiment model for online reviews. In: AAAI, vol. 27 (2013)

    Google Scholar 

  18. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014, Conference Track Proceedings (2014)

    Google Scholar 

  19. Kowsari, K., et al.: HDLTex: hierarchical deep learning for text classification. In: International Conference on Machine Learning and Applications. IEEE (2017)

    Google Scholar 

  20. Lau, J.H., Newman, D., Baldwin, T.: Machine reading tea leaves: automatically evaluating topic coherence and topic model quality. In: Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, pp. 530–539 (2014)

    Google Scholar 

  21. Le, T., Lauw, H.: Manifold learning for jointly modeling topic and visualization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28 (2014)

    Google Scholar 

  22. Le, T.M., Lauw, H.W.: Semantic visualization for spherical representation. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1007–1016 (2014)

    Google Scholar 

  23. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    MATH  Google Scholar 

  24. Paisley, J., Wang, C., Blei, D.M., Jordan, M.I.: Nested hierarchical Dirichlet processes. IEEE Trans. Pattern Anal. Mach. Intell. 37(2), 256–270 (2014)

    Article  Google Scholar 

  25. Pham, D., Le, T.: Auto-encoding variational Bayes for inferring topics and visualization. In: Proceedings of the 28th International Conference on Computational Linguistics (2020)

    Google Scholar 

  26. Smith, A., Hawes, T., Myers, M.: Hiearchie: visualization for hierarchical topic models. In: Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces, pp. 71–78 (2014)

    Google Scholar 

  27. Srivastava, A., Sutton, C.A.: Autoencoding variational inference for topic models. In: ICLR (2017)

    Google Scholar 

  28. Wang, R., et al.: Neural topic modeling with bidirectional adversarial training. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 340–350 (2020)

    Google Scholar 

  29. Wang, X., Yang, Y.: Neural topic model with attention for supervised learning. In: International Conference on Artificial Intelligence and Statistics, pp. 1147–1156. PMLR (2020)

    Google Scholar 

  30. Yang, Y., Yao, Q., Qu, H.: VISTopic: a visual analytics system for making sense of large document collections using hierarchical topic modeling. Visual Inform. 1(1), 40–47 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This research is sponsored by NSF #1757207 and NSF #1914635.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dang Pham or Tuan M. V. Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pham, D., Le, T.M.V. (2021). Neural Topic Models for Hierarchical Topic Detection and Visualization. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2021. Lecture Notes in Computer Science(), vol 12977. Springer, Cham. https://doi.org/10.1007/978-3-030-86523-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86523-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86522-1

  • Online ISBN: 978-3-030-86523-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics