Abstract
For two decades, TRIZ has been considered as an inventive approach without rival in the existing design methods. It owes its originality to the work of Altshuller and his colleagues who compiled a large amount of scientific and technological data from all domains to build generic meta-models that inspire its users. But in its history, TRIZ has also met detractors who point out above all its learning complexity and the lack of scientific rigor of its description. This article presents the progress of our research in the use of Artificial Intelligence and in particular the progress made in reproducing TRIZ reasoning through the Deep Learning approach on a large quantity of trans-disciplinary patent sets. We describe the approach used, propose and discuss two case studies that artificially reproduce TRIZ reasoning in order to test the relevance of such an approach and its perspectives for the future of our research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bultey, A., De Bertrand De Beuvron, F., Rousselot, F.: A substance-field ontology to support the TRIZ thinking approach. Int. J. Comput. Appl. Technol. 30(1–2), 113–124 (2007)
Cascini, G., Russo, D.: Computer-aided analysis of patents and search for TRIZ contradictions. Int. J. Prod. Dev. 4(1–2), 52–67 (2007)
Cavallucci, D., Rousselot, F., Zanni, C.: Initial situation analysis through problem graph. CIRP J. Manuf. Sci. Technol. 2(4), 310–317 (2010)
Cronier, P., Pietu, G., Dujardin, C., Bigorre, N., Ducellier, F., Gerard, R.: The concept of locking plates. Orthop. Traumatol. Surg. Res. 96(4), S17–S36 (2010)
Dubois, S., Lutz, P., Rousselot, F., Caillaud, E.: A formal model for the representation of problems based on TRIZ. In: International Conference on Engineering Design (ICED 2005), p. NA, August, 2005
Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610 (2005)
Loh, H.T., He, C., Shen, L.: Automatic classification of patent documents for TRIZ users. World Patent Inf. 28(1), 6–13 (2006)
Mueller, J., Thyagarajan, A.: Siamese recurrent architectures for learning sentence similarity. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1), March, 2016
Ni, X., Samet, A., Cavallucci, D.: An approach merging the IDM-related knowledge. In International TRIZ Future Conference, pp. 147–158. Springer, Cham, October 2019
Ni, X., Samet, A., Cavallucci, D.: Build links between problems and solutions in the patent. In: Cavallucci, D., Brad, S., Livotov, P. (eds.) Systematic Complex Problem Solving in the Age of Digitalization and Open Innovation. TFC 2020. IFIP Advances in Information and Communication Technology, vol. 597, pp. 64–76. Springer, Cham, October 2020. https://doi.org/10.1007/978-3-030-61295-5_6
Ni, X., Samet, A., Cavallucci, D.: Similarity-based approach for inventive design solutions assistance. J. Intell. Manuf. 1, 18 (2021). https://doi.org/10.1007/s10845-021-01749-4
Ni, X., Samet, A., Cavallucci, D.: Similarity computation supporting creative activities. In: Proceedings of the Sixth International Conference on Design Creativity (ICDC 2020), pp. 207–214 (2020)
Park, H., Ree, J.J., Kim, K.: Identification of promising patents for technology transfers using TRIZ evolution trends. Expert Syst. Appl. 40(2), 736–743 (2013)
Perren, S.M.: Evolution of the internal fixation of long bone fractures: the scientific basis of biological internal fixation: choosing a new balance between stability and biology. J. Bone Joint Surg. 84(8), 1093–1110 (2002)
Souili, A., Cavallucci, D., Rousselot, F.: A lexico-syntactic pattern matching method to extract IDM-TRIZ knowledge from on-line patent databases. Procedia Eng. 131, 418–425 (2015)
Souili, A., Cavallucci, D., Rousselot, F., Zanni, C.: Starting from patents to find inputs to the problem graph model of IDM-TRIZ. Procedia Eng. 131, 150–161 (2015)
Verhaegen, P.A., D’hondt, J., Vertommen, J., Dewulf, S., Duflou, J.R.: Searching for similar products through patent analysis. Procedia Eng. 9, 431–441 (2011)
Yeap, T., Loo, G.H., Pang, S.: Computational patent mapping: intelligent agents for nanotechnology. In: Proceedings International Conference on MEMS, NANO and Smart Systems, pp. 274–278. IEEE, July 2003
Acknowledgement
This work was supported by the China Scholarship Council. The statements in this paper are entirely the responsibility of the authors.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 IFIP International Federation for Information Processing
About this paper
Cite this paper
Ni, X., Samet, A., Cavallucci, D. (2021). Replicating TRIZ Reasoning Through Deep Learning. In: Borgianni, Y., Brad, S., Cavallucci, D., Livotov, P. (eds) Creative Solutions for a Sustainable Development. TFC 2021. IFIP Advances in Information and Communication Technology, vol 635. Springer, Cham. https://doi.org/10.1007/978-3-030-86614-3_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-86614-3_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86613-6
Online ISBN: 978-3-030-86614-3
eBook Packages: Computer ScienceComputer Science (R0)